Inorganic Chemistry, volume 61, issue 42, pages 16596-16606
Deep-Blue Emissive Copper(I) Complexes Based on P-Thiophenylethyl-Substituted Cyclic Bisphosphines Displaying Photoinduced Structural Transformations of the Excited States
Igor D Strelnik
1
,
Irina R Dayanova
1
,
Alexey Kalinichev
2
,
Artemiy Shmelev
3
,
Daut R. Islamov
1
,
Peter Lönnecke
4
,
Elvira Musina
1
,
Publication type: Journal Article
Publication date: 2022-10-13
Journal:
Inorganic Chemistry
scimago Q1
SJR: 0.928
CiteScore: 7.6
Impact factor: 4.3
ISSN: 00201669, 1520510X
Inorganic Chemistry
Physical and Theoretical Chemistry
Abstract
A synthetic method for a primary 2-(thiophen-2'-yl)ethylphosphine was developed. The reaction of thiophenylethylphosphine with paraformaldehyde and primary arylamines leads to the formation of cyclic bisphosphines, namely, 1,5-di(aryl)-3,7-bis(thiophenylethyl)-1,5-diaza-3,7-diphosphacyclooctane (aryl = phenyl, p-tolyl). The obtained bisphosphines form cationic bis-P,P-chelate complexes with copper(I) tetrafluoroborate, which were structurally characterized by NMR spectroscopy, mass spectrometry, and elemental and XRD analyses. Surprisingly, the copper(I) complexes display a multiband emission in the solid state with maxima at 355-360, 425-430, and 480-490 nm and nanosecond lifetimes (1.2-1.4 ns) upon a 335 nm excitation. The excitation of the complexes at 360 nm at room temperature results in a deep-blue emission at 425-430 nm and a tail at 460-490 nm. A temperature decrease leads to an increased intensity of the emission band at 480 nm, while the luminescence lifetimes insignificantly increased up to 14 ns. Quantum chemical calculations explain the observed unusual luminescent behavior by the existence of "undistorted" and "flattened" singlet excited states of copper(I) complexes at room temperature and at 77 K, respectively.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.