volume 60 issue 12 pages 5832-5852

Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19

Rupesh Agarwal 2, 3
M. B. Baker 4
S. Boehm 4
K G Byler 5
S.Y. Chen 7
W Justin Cooper 2, 3
O Demerdash 9
J D Eblen 2, 11
S. Ellingson 12
Stefano Forli 13
J. Glaser 14
J Gunnels 15
O. Hernandez 4
Stephan Irle 6, 16, 17
D W Kneller 8
J. LARKIN 18
T. J. Lawrence 9
S. LEGRAND 18
Shanqin Liu 2, 11
J C Mitchell 9
G. Park 7
J. M. Lakey 2, 3
A. Pavlova 1
Loukas Petridis 2, 11
D. Poole 18
L Pouchard 7
A. Ramanathan 19
D Santos Martins 13
A Scheinberg 20
A Sedova 9
Y. Shen 2, 3
Jeremy M. Smith 2, 11
C Soto 7
A. Tsaris 14
M Thavappiragasam 9
A F Tillack 13
V Q Vuong 6, 16, 17
J. Yin 14
S. Yoo 7
M. Zahran 21
15
 
HPC Engineering, Amazon Web Services, Seattle, Washington 98121, United States
20
 
Jubilee Development, Cambridge Massachusetts 02139, United States
21
 
Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, New York 11201, United States
22
 
CNR Institute of Nanoscience, I-41125 Modena, Italy
Publication typeJournal Article
Publication date2020-12-16
scimago Q1
wos Q1
SJR1.467
CiteScore9.8
Impact factor5.3
ISSN15499596, 1549960X
General Chemistry
Computer Science Applications
General Chemical Engineering
Library and Information Sciences
Abstract
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
18
Journal of Chemical Information and Modeling
17 publications, 10.49%
Journal of Biomolecular Structure and Dynamics
6 publications, 3.7%
Chemical Science
6 publications, 3.7%
Scientific Reports
4 publications, 2.47%
Journal of Chemical Theory and Computation
4 publications, 2.47%
Journal of Chemical Physics
3 publications, 1.85%
International Journal of Molecular Sciences
3 publications, 1.85%
Molecules
3 publications, 1.85%
bioRxiv
3 publications, 1.85%
Methods in Molecular Biology
3 publications, 1.85%
Molecular Informatics
3 publications, 1.85%
Pharmaceuticals
2 publications, 1.23%
Frontiers in Molecular Biosciences
2 publications, 1.23%
Journal of Computer-Aided Molecular Design
2 publications, 1.23%
In Silico Pharmacology
2 publications, 1.23%
Current Opinion in Structural Biology
2 publications, 1.23%
Biophysical Journal
2 publications, 1.23%
Journal of Medicinal Chemistry
2 publications, 1.23%
Journal of Physical Chemistry Letters
2 publications, 1.23%
Expert Opinion on Drug Discovery
2 publications, 1.23%
Annual Reports in Medicinal Chemistry
2 publications, 1.23%
Drug Discovery Today
2 publications, 1.23%
Drug Target Selection and Validation
2 publications, 1.23%
Chemistry - A European Journal
1 publication, 0.62%
EPJ Web of Conferences
1 publication, 0.62%
IUCrJ
1 publication, 0.62%
ChemistrySelect
1 publication, 0.62%
International Journal of High Performance Computing Applications
1 publication, 0.62%
International Journal of Quantum Chemistry
1 publication, 0.62%
2
4
6
8
10
12
14
16
18

Publishers

5
10
15
20
25
30
American Chemical Society (ACS)
28 publications, 17.28%
Elsevier
28 publications, 17.28%
Springer Nature
25 publications, 15.43%
MDPI
17 publications, 10.49%
Wiley
12 publications, 7.41%
Cold Spring Harbor Laboratory
11 publications, 6.79%
Institute of Electrical and Electronics Engineers (IEEE)
10 publications, 6.17%
Taylor & Francis
9 publications, 5.56%
Royal Society of Chemistry (RSC)
8 publications, 4.94%
AIP Publishing
3 publications, 1.85%
Frontiers Media S.A.
3 publications, 1.85%
EDP Sciences
1 publication, 0.62%
International Union of Crystallography (IUCr)
1 publication, 0.62%
SAGE
1 publication, 0.62%
Public Library of Science (PLoS)
1 publication, 0.62%
Oxford University Press
1 publication, 0.62%
Bentham Science Publishers Ltd.
1 publication, 0.62%
Altai State University
1 publication, 0.62%
Association for Computing Machinery (ACM)
1 publication, 0.62%
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
162
Share
Cite this
GOST |
Cite this
GOST Copy
Acharya A. et al. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 // Journal of Chemical Information and Modeling. 2020. Vol. 60. No. 12. pp. 5832-5852.
GOST all authors (up to 50) Copy
Acharya A. et al. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 // Journal of Chemical Information and Modeling. 2020. Vol. 60. No. 12. pp. 5832-5852.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jcim.0c01010
UR - https://doi.org/10.1021/acs.jcim.0c01010
TI - Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
T2 - Journal of Chemical Information and Modeling
AU - Acharya, Arbind
AU - Agarwal, Rupesh
AU - Baker, M. B.
AU - Baudry, Jerome
AU - Bhowmik, Debsindhu
AU - Boehm, S.
AU - Byler, K G
AU - Chen, S.Y.
AU - Coates, Leighton
AU - Cooper, W Justin
AU - Demerdash, O
AU - Daidone, Isabella
AU - Eblen, J D
AU - Ellingson, S.
AU - Forli, Stefano
AU - Glaser, J.
AU - Gumbart, James C.
AU - Gunnels, J
AU - Hernandez, O.
AU - Irle, Stephan
AU - Kneller, D W
AU - Kovalevsky, Andrey
AU - LARKIN, J.
AU - Lawrence, T. J.
AU - LEGRAND, S.
AU - Liu, Shanqin
AU - Mitchell, J C
AU - Park, G.
AU - Lakey, J. M.
AU - Pavlova, A.
AU - Petridis, Loukas
AU - Poole, D.
AU - Pouchard, L
AU - Ramanathan, A.
AU - Rogers, David F.
AU - Santos Martins, D
AU - Scheinberg, A
AU - Sedova, A
AU - Shen, Y.
AU - Smith, Jeremy M.
AU - Smith, Micholas Dean
AU - Soto, C
AU - Tsaris, A.
AU - Thavappiragasam, M
AU - Tillack, A F
AU - Vermaas, Josh V.
AU - Vuong, V Q
AU - Yin, J.
AU - Yoo, S.
AU - Zahran, M.
AU - Zanetti Polzi, Laura
PY - 2020
DA - 2020/12/16
PB - American Chemical Society (ACS)
SP - 5832-5852
IS - 12
VL - 60
PMID - 33326239
SN - 1549-9596
SN - 1549-960X
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Acharya,
author = {Arbind Acharya and Rupesh Agarwal and M. B. Baker and Jerome Baudry and Debsindhu Bhowmik and S. Boehm and K G Byler and S.Y. Chen and Leighton Coates and W Justin Cooper and O Demerdash and Isabella Daidone and J D Eblen and S. Ellingson and Stefano Forli and J. Glaser and James C. Gumbart and J Gunnels and O. Hernandez and Stephan Irle and D W Kneller and Andrey Kovalevsky and J. LARKIN and T. J. Lawrence and S. LEGRAND and Shanqin Liu and J C Mitchell and G. Park and J. M. Lakey and A. Pavlova and Loukas Petridis and D. Poole and L Pouchard and A. Ramanathan and David F. Rogers and D Santos Martins and A Scheinberg and A Sedova and Y. Shen and Jeremy M. Smith and Micholas Dean Smith and C Soto and A. Tsaris and M Thavappiragasam and A F Tillack and Josh V. Vermaas and V Q Vuong and J. Yin and S. Yoo and M. Zahran and others},
title = {Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19},
journal = {Journal of Chemical Information and Modeling},
year = {2020},
volume = {60},
publisher = {American Chemical Society (ACS)},
month = {dec},
url = {https://doi.org/10.1021/acs.jcim.0c01010},
number = {12},
pages = {5832--5852},
doi = {10.1021/acs.jcim.0c01010}
}
MLA
Cite this
MLA Copy
Acharya, Arbind, et al. “Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19.” Journal of Chemical Information and Modeling, vol. 60, no. 12, Dec. 2020, pp. 5832-5852. https://doi.org/10.1021/acs.jcim.0c01010.