Journal of Chemical Information and Modeling, volume 63, issue 3, pages 695-701

Chemistry42: An AI-Driven Platform for Molecular Design and Optimization

Dmitry Bezrukov 1
Bogdan Zagribelnyy 3
Vladimir Aladinskiy 3
Petrina Kamya 2
Alex Aliper 3
Feng Ren 4
1
 
Insilico Medicine Kong Kong Ltd., Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, Hong Kong
2
 
Insilico Medicine Canada Inc., 3710-1250 René-Lévesque Blvd W, Montreal, Quebec, H3B 4W8 Canada
3
 
Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, PO Box 145748, Abu Dhabi, UAE
4
 
Insilico Medicine Shanghai Ltd., Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
Publication typeJournal Article
Publication date2023-02-02
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor5.6
ISSN15499596, 1549960X
General Chemistry
Computer Science Applications
General Chemical Engineering
Library and Information Sciences

Top-30

Journals

1
2
3
4
5
6
Journal of Chemical Information and Modeling
6 publications, 10.53%
Journal of Medicinal Chemistry
4 publications, 7.02%
Drug Discovery Today
3 publications, 5.26%
ACS Medicinal Chemistry Letters
2 publications, 3.51%
Chemical Science
2 publications, 3.51%
Signal Transduction and Targeted Therapy
1 publication, 1.75%
Expert Opinion on Drug Discovery
1 publication, 1.75%
New Biotechnology
1 publication, 1.75%
Bioorganic and Medicinal Chemistry
1 publication, 1.75%
Trends in Pharmacological Sciences
1 publication, 1.75%
Big Data and Cognitive Computing
1 publication, 1.75%
Journal of Pharmaceutical Investigation
1 publication, 1.75%
Current Opinion in Structural Biology
1 publication, 1.75%
Methods
1 publication, 1.75%
Annual Review of Pharmacology and Toxicology
1 publication, 1.75%
Frontiers in Hematology
1 publication, 1.75%
Wiley Interdisciplinary Reviews: Computational Molecular Science
1 publication, 1.75%
Frontiers in Drug Discovery
1 publication, 1.75%
Journal of Cheminformatics
1 publication, 1.75%
Digital Discovery
1 publication, 1.75%
Nature Biotechnology
1 publication, 1.75%
Artificial Intelligence Review
1 publication, 1.75%
Bioorganic Chemistry
1 publication, 1.75%
ChemistrySelect
1 publication, 1.75%
Russian Chemical Reviews
1 publication, 1.75%
Frontiers in Chemistry
1 publication, 1.75%
Clinica Chimica Acta
1 publication, 1.75%
Molecules
1 publication, 1.75%
Nature Machine Intelligence
1 publication, 1.75%
1
2
3
4
5
6

Publishers

2
4
6
8
10
12
14
16
Elsevier
16 publications, 28.07%
American Chemical Society (ACS)
13 publications, 22.81%
Springer Nature
8 publications, 14.04%
Frontiers Media S.A.
4 publications, 7.02%
Royal Society of Chemistry (RSC)
3 publications, 5.26%
Cold Spring Harbor Laboratory
2 publications, 3.51%
MDPI
2 publications, 3.51%
Wiley
2 publications, 3.51%
Taylor & Francis
1 publication, 1.75%
Annual Reviews
1 publication, 1.75%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 1.75%
Oxford University Press
1 publication, 1.75%
Institute of Electrical and Electronics Engineers (IEEE)
1 publication, 1.75%
2
4
6
8
10
12
14
16
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Ivanenkov Y. et al. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization // Journal of Chemical Information and Modeling. 2023. Vol. 63. No. 3. pp. 695-701.
GOST all authors (up to 50) Copy
Ivanenkov Y., Polykovskiy D., Bezrukov D., Zagribelnyy B., Aladinskiy V., Kamya P., Aliper A., Ren F., Zhavoronkov A. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization // Journal of Chemical Information and Modeling. 2023. Vol. 63. No. 3. pp. 695-701.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.jcim.2c01191
UR - https://doi.org/10.1021/acs.jcim.2c01191
TI - Chemistry42: An AI-Driven Platform for Molecular Design and Optimization
T2 - Journal of Chemical Information and Modeling
AU - Ivanenkov, Yan
AU - Polykovskiy, Daniil
AU - Bezrukov, Dmitry
AU - Zagribelnyy, Bogdan
AU - Aladinskiy, Vladimir
AU - Kamya, Petrina
AU - Aliper, Alex
AU - Ren, Feng
AU - Zhavoronkov, Alex
PY - 2023
DA - 2023/02/02
PB - American Chemical Society (ACS)
SP - 695-701
IS - 3
VL - 63
SN - 1549-9596
SN - 1549-960X
ER -
BibTex |
Cite this
BibTex Copy
@article{2023_Ivanenkov,
author = {Yan Ivanenkov and Daniil Polykovskiy and Dmitry Bezrukov and Bogdan Zagribelnyy and Vladimir Aladinskiy and Petrina Kamya and Alex Aliper and Feng Ren and Alex Zhavoronkov},
title = {Chemistry42: An AI-Driven Platform for Molecular Design and Optimization},
journal = {Journal of Chemical Information and Modeling},
year = {2023},
volume = {63},
publisher = {American Chemical Society (ACS)},
month = {feb},
url = {https://doi.org/10.1021/acs.jcim.2c01191},
number = {3},
pages = {695--701},
doi = {10.1021/acs.jcim.2c01191}
}
MLA
Cite this
MLA Copy
Ivanenkov, Yan, et al. “Chemistry42: An AI-Driven Platform for Molecular Design and Optimization.” Journal of Chemical Information and Modeling, vol. 63, no. 3, Feb. 2023, pp. 695-701. https://doi.org/10.1021/acs.jcim.2c01191.
Found error?