том 60 издание 1 страницы 22-28

Graph Convolutional Neural Networks as "general-Purpose" Property Predictors: The Universality and Limits of Applicability

Vadim Korolev 1, 2
Artem Mitrofanov 1, 2
Alexandru Korotcov 1
Valery Tkachenko 1
Тип публикацииJournal Article
Дата публикации2019-12-20
scimago Q1
wos Q1
БС1
SJR1.467
CiteScore9.8
Impact factor5.3
ISSN15499596, 1549960X
General Chemistry
Computer Science Applications
General Chemical Engineering
Library and Information Sciences
Краткое описание
Nowadays the development of new functional materials/chemical compounds using machine learning (ML) techniques is a hot topic and includes several crucial steps, one of which is the choice of chemical structure representation. Classical approach of rigorous feature engineering in ML typically improves the performance of the predictive model, but at the same time, it narrows down the scope of applicability and decreases the physical interpretability of predicted results. In this study, we present graph convolutional neural networks (GCNN) as an architecture that allows to successfully predict the properties of compounds from diverse domains of chemical space, using a minimal set of meaningful descriptors. The applicability of GCNN models has been demonstrated by a wide range of chemical domain-specific properties. Their performance is comparable to state-of-the-art techniques; however, this architecture exempts from the need to carry out precise feature engineering.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
Journal of Chemical Information and Modeling
7 публикаций, 8.54%
Briefings in Bioinformatics
6 публикаций, 7.32%
ACS Omega
3 публикации, 3.66%
Environmental Science & Technology
3 публикации, 3.66%
Scientific Reports
3 публикации, 3.66%
International Journal of Molecular Sciences
2 публикации, 2.44%
Journal of Cheminformatics
2 публикации, 2.44%
Molecular Informatics
2 публикации, 2.44%
Angewandte Chemie
2 публикации, 2.44%
Angewandte Chemie - International Edition
2 публикации, 2.44%
Chemical Science
2 публикации, 2.44%
Computers and Chemical Engineering
2 публикации, 2.44%
Materials Horizons
1 публикация, 1.22%
Journal of Physical Chemistry Letters
1 публикация, 1.22%
Advanced Intelligent Systems
1 публикация, 1.22%
Frontiers in Chemistry
1 публикация, 1.22%
Nature Reviews Chemistry
1 публикация, 1.22%
Science China Materials
1 публикация, 1.22%
International Journal of Minerals, Metallurgy and Materials
1 публикация, 1.22%
Microporous and Mesoporous Materials
1 публикация, 1.22%
Drug Discovery Today
1 публикация, 1.22%
Materials and Design
1 публикация, 1.22%
Analytica Chimica Acta
1 публикация, 1.22%
Mendeleev Communications
1 публикация, 1.22%
Langmuir
1 публикация, 1.22%
AICHE Journal
1 публикация, 1.22%
ACS Central Science
1 публикация, 1.22%
Chemical Reviews
1 публикация, 1.22%
Journal of Medicinal Chemistry
1 публикация, 1.22%
ACS Polymers Au
1 публикация, 1.22%
1
2
3
4
5
6
7

Издатели

5
10
15
20
25
30
American Chemical Society (ACS)
28 публикаций, 34.15%
Springer Nature
11 публикаций, 13.41%
Wiley
10 публикаций, 12.2%
Elsevier
10 публикаций, 12.2%
Oxford University Press
6 публикаций, 7.32%
Royal Society of Chemistry (RSC)
4 публикации, 4.88%
MDPI
3 публикации, 3.66%
Frontiers Media S.A.
1 публикация, 1.22%
University of Science and Technology Beijing
1 публикация, 1.22%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.22%
Hindawi Limited
1 публикация, 1.22%
Annual Reviews
1 публикация, 1.22%
Canadian Science Publishing
1 публикация, 1.22%
IOP Publishing
1 публикация, 1.22%
AIP Publishing
1 публикация, 1.22%
Korean Society of Environmental Health
1 публикация, 1.22%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
82
Поделиться
Цитировать
ГОСТ |
Цитировать
Korolev V. et al. Graph Convolutional Neural Networks as "general-Purpose" Property Predictors: The Universality and Limits of Applicability // Journal of Chemical Information and Modeling. 2019. Vol. 60. No. 1. pp. 22-28.
ГОСТ со всеми авторами (до 50) Скопировать
Korolev V., Mitrofanov A., Korotcov A., Tkachenko V. Graph Convolutional Neural Networks as "general-Purpose" Property Predictors: The Universality and Limits of Applicability // Journal of Chemical Information and Modeling. 2019. Vol. 60. No. 1. pp. 22-28.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.jcim.9b00587
UR - https://pubs.acs.org/doi/10.1021/acs.jcim.9b00587
TI - Graph Convolutional Neural Networks as "general-Purpose" Property Predictors: The Universality and Limits of Applicability
T2 - Journal of Chemical Information and Modeling
AU - Korolev, Vadim
AU - Mitrofanov, Artem
AU - Korotcov, Alexandru
AU - Tkachenko, Valery
PY - 2019
DA - 2019/12/20
PB - American Chemical Society (ACS)
SP - 22-28
IS - 1
VL - 60
PMID - 31860296
SN - 1549-9596
SN - 1549-960X
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Korolev,
author = {Vadim Korolev and Artem Mitrofanov and Alexandru Korotcov and Valery Tkachenko},
title = {Graph Convolutional Neural Networks as "general-Purpose" Property Predictors: The Universality and Limits of Applicability},
journal = {Journal of Chemical Information and Modeling},
year = {2019},
volume = {60},
publisher = {American Chemical Society (ACS)},
month = {dec},
url = {https://pubs.acs.org/doi/10.1021/acs.jcim.9b00587},
number = {1},
pages = {22--28},
doi = {10.1021/acs.jcim.9b00587}
}
MLA
Цитировать
Korolev, Vadim, et al. “Graph Convolutional Neural Networks as "general-Purpose" Property Predictors: The Universality and Limits of Applicability.” Journal of Chemical Information and Modeling, vol. 60, no. 1, Dec. 2019, pp. 22-28. https://pubs.acs.org/doi/10.1021/acs.jcim.9b00587.