том 14 издание 7 страницы 3740-3751

First-Principles Modeling of Polaron Formation in TiO2 Polymorphs

A. R. Elmaslmane 1
Matthew W. Watkins 2
Keith P. McKenna 1
Тип публикацииJournal Article
Дата публикации2018-06-06
scimago Q1
wos Q1
БС1
SJR1.482
CiteScore9.8
Impact factor5.5
ISSN15499618, 15499626
Physical and Theoretical Chemistry
Computer Science Applications
Краткое описание
We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO2 including anatase, rutile, brookite, TiO2(H), TiO2(R), and TiO2(B). Electron polarons are predicted to form in rutile, TiO2(H), and TiO2(R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO2(H) and TiO2(R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO2(H), TiO2(R), and TiO2(B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO2(B) holes localize on a single O ion, whereas in TiO2(H) and TiO2(R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
16
Journal of Physical Chemistry C
15 публикаций, 16.85%
Physical Review B
11 публикаций, 12.36%
Journal of Physical Chemistry Letters
8 публикаций, 8.99%
Physical Chemistry Chemical Physics
3 публикации, 3.37%
Journal of Applied Physics
2 публикации, 2.25%
Journal of Chemical Physics
2 публикации, 2.25%
Physical Review Materials
2 публикации, 2.25%
Physical Review Research
2 публикации, 2.25%
Chemistry of Materials
2 публикации, 2.25%
Advanced Theory and Simulations
2 публикации, 2.25%
Nano Letters
2 публикации, 2.25%
Journal of the American Chemical Society
2 публикации, 2.25%
ChemPhysChem
2 публикации, 2.25%
Applied Physics Reviews
1 публикация, 1.12%
Chinese Journal of Chemical Physics
1 публикация, 1.12%
Bulletin of the Chemical Society of Japan
1 публикация, 1.12%
Materials
1 публикация, 1.12%
Nature Reviews Materials
1 публикация, 1.12%
Nature Materials
1 публикация, 1.12%
International Journal of Hydrogen Energy
1 публикация, 1.12%
Journal of Physics Condensed Matter
1 публикация, 1.12%
npj Computational Materials
1 публикация, 1.12%
Acta Materialia
1 публикация, 1.12%
Journal of Alloys and Compounds
1 публикация, 1.12%
Physica E: Low-Dimensional Systems and Nanostructures
1 публикация, 1.12%
Advanced Electronic Materials
1 публикация, 1.12%
Wiley Interdisciplinary Reviews: Computational Molecular Science
1 публикация, 1.12%
ACS applied materials & interfaces
1 публикация, 1.12%
ACS Omega
1 публикация, 1.12%
Journal of Chemical Theory and Computation
1 публикация, 1.12%
2
4
6
8
10
12
14
16

Издатели

5
10
15
20
25
30
35
American Chemical Society (ACS)
35 публикаций, 39.33%
American Physical Society (APS)
15 публикаций, 16.85%
AIP Publishing
7 публикаций, 7.87%
Elsevier
7 публикаций, 7.87%
Wiley
7 публикаций, 7.87%
Royal Society of Chemistry (RSC)
7 публикаций, 7.87%
Springer Nature
3 публикации, 3.37%
MDPI
2 публикации, 2.25%
Oxford University Press
1 публикация, 1.12%
IOP Publishing
1 публикация, 1.12%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.12%
Frontiers Media S.A.
1 публикация, 1.12%
American Association for the Advancement of Science (AAAS)
1 публикация, 1.12%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 1.12%
5
10
15
20
25
30
35
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
89
Поделиться
Цитировать
ГОСТ |
Цитировать
Elmaslmane A. R., Watkins M. W., McKenna K. P. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs // Journal of Chemical Theory and Computation. 2018. Vol. 14. No. 7. pp. 3740-3751.
ГОСТ со всеми авторами (до 50) Скопировать
Elmaslmane A. R., Watkins M. W., McKenna K. P. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs // Journal of Chemical Theory and Computation. 2018. Vol. 14. No. 7. pp. 3740-3751.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.jctc.8b00199
UR - https://doi.org/10.1021/acs.jctc.8b00199
TI - First-Principles Modeling of Polaron Formation in TiO2 Polymorphs
T2 - Journal of Chemical Theory and Computation
AU - Elmaslmane, A. R.
AU - Watkins, Matthew W.
AU - McKenna, Keith P.
PY - 2018
DA - 2018/06/06
PB - American Chemical Society (ACS)
SP - 3740-3751
IS - 7
VL - 14
PMID - 29874462
SN - 1549-9618
SN - 1549-9626
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2018_Elmaslmane,
author = {A. R. Elmaslmane and Matthew W. Watkins and Keith P. McKenna},
title = {First-Principles Modeling of Polaron Formation in TiO2 Polymorphs},
journal = {Journal of Chemical Theory and Computation},
year = {2018},
volume = {14},
publisher = {American Chemical Society (ACS)},
month = {jun},
url = {https://doi.org/10.1021/acs.jctc.8b00199},
number = {7},
pages = {3740--3751},
doi = {10.1021/acs.jctc.8b00199}
}
MLA
Цитировать
Elmaslmane, A. R., et al. “First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.” Journal of Chemical Theory and Computation, vol. 14, no. 7, Jun. 2018, pp. 3740-3751. https://doi.org/10.1021/acs.jctc.8b00199.