volume 17 issue 6 pages 3493-3500

Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer

T. Hirahara 1
Sergey V. Eremeev 2, 3, 4, 5
Yuma Okuyama 1
Takayuki Kubo 7
Ryosuke Nakanishi 7
Ryota Akiyama 7
A. Takayama 7
T. Hajiri 8
Shin-ichiro Ideta 8
Masaharu Matsunami 8
Kazuki Sumida 9
Koji Miyamoto 10
Yasumasa Takagi 11
K. Tanaka 8
T. Okuda 10
Toshihiko Yokoyama 11
Satoshi KIMURA 8
Shuji Hasegawa 7
E.V. Chulkov 3, 4, 5, 12, 13
Publication typeJournal Article
Publication date2017-06-05
scimago Q1
wos Q1
SJR2.967
CiteScore14.9
Impact factor9.1
ISSN15306984, 15306992
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Bioengineering
Abstract
Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBi2Se4/Bi2Se3 heterostructure, which was fabricated by self-assembling a MnBi2Se4 layer on top of the Bi2Se3 surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBi2Se4/Bi2Se3 heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any other significant changes in the rest of the band structure. It can be considered as a result of the direct interaction of the surface Dirac cone and the magnetic layer rather than a magnetic proximity effect. This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = -1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future "topotronics" devices.
Found 
Found 

Top-30

Journals

5
10
15
20
25
Physical Review B
24 publications, 16.9%
Nano Letters
8 publications, 5.63%
Physical Review Materials
6 publications, 4.23%
Scientific Reports
5 publications, 3.52%
Applied Physics Letters
5 publications, 3.52%
Journal of Physics Condensed Matter
5 publications, 3.52%
Journal of Physical Chemistry Letters
4 publications, 2.82%
Nature
3 publications, 2.11%
Journal of Materials Chemistry C
3 publications, 2.11%
npj Quantum Materials
2 publications, 1.41%
Journal of Experimental and Theoretical Physics
2 publications, 1.41%
APL Materials
2 publications, 1.41%
Journal of Magnetism and Magnetic Materials
2 publications, 1.41%
Physical Chemistry Chemical Physics
2 publications, 1.41%
Materials
2 publications, 1.41%
Nanomaterials
2 publications, 1.41%
Physical Review Letters
2 publications, 1.41%
Physical Review Research
2 publications, 1.41%
Nature Communications
2 publications, 1.41%
JETP Letters
2 publications, 1.41%
Chinese Physics Letters
2 publications, 1.41%
Journal Physics D: Applied Physics
2 publications, 1.41%
Advanced Materials
2 publications, 1.41%
Chemistry of Materials
2 publications, 1.41%
ACS Nano
2 publications, 1.41%
Science advances
2 publications, 1.41%
Proceedings of the National Academy of Sciences of the United States of America
2 publications, 1.41%
Advanced Functional Materials
2 publications, 1.41%
Vacuum and Surface Science
2 publications, 1.41%
5
10
15
20
25

Publishers

5
10
15
20
25
30
35
40
American Physical Society (APS)
36 publications, 25.35%
Springer Nature
18 publications, 12.68%
American Chemical Society (ACS)
17 publications, 11.97%
IOP Publishing
15 publications, 10.56%
AIP Publishing
9 publications, 6.34%
Elsevier
9 publications, 6.34%
Pleiades Publishing
6 publications, 4.23%
Royal Society of Chemistry (RSC)
6 publications, 4.23%
Wiley
6 publications, 4.23%
MDPI
5 publications, 3.52%
American Association for the Advancement of Science (AAAS)
3 publications, 2.11%
Proceedings of the National Academy of Sciences (PNAS)
2 publications, 1.41%
The Surface Science Society of Japan
2 publications, 1.41%
World Scientific
1 publication, 0.7%
Chinese Society of Rare Earths
1 publication, 0.7%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 publication, 0.7%
Oxford University Press
1 publication, 0.7%
Akademizdatcenter Nauka
1 publication, 0.7%
Science in China Press
1 publication, 0.7%
Scientific Scholar
1 publication, 0.7%
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
142
Share
Cite this
GOST |
Cite this
GOST Copy
Hirahara T. et al. Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer // Nano Letters. 2017. Vol. 17. No. 6. pp. 3493-3500.
GOST all authors (up to 50) Copy
Hirahara T., Eremeev S. V., Shirasawa T., Okuyama Y., Kubo T., Nakanishi R., Akiyama R., Takayama A., Hajiri T., Ideta S., Matsunami M., Sumida K., Miyamoto K., Takagi Y., Tanaka K., Okuda T., Yokoyama T., KIMURA S., Hasegawa S., Chulkov E. Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer // Nano Letters. 2017. Vol. 17. No. 6. pp. 3493-3500.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acs.nanolett.7b00560
UR - https://doi.org/10.1021/acs.nanolett.7b00560
TI - Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer
T2 - Nano Letters
AU - Hirahara, T.
AU - Eremeev, Sergey V.
AU - Shirasawa, Tetsuroh
AU - Okuyama, Yuma
AU - Kubo, Takayuki
AU - Nakanishi, Ryosuke
AU - Akiyama, Ryota
AU - Takayama, A.
AU - Hajiri, T.
AU - Ideta, Shin-ichiro
AU - Matsunami, Masaharu
AU - Sumida, Kazuki
AU - Miyamoto, Koji
AU - Takagi, Yasumasa
AU - Tanaka, K.
AU - Okuda, T.
AU - Yokoyama, Toshihiko
AU - KIMURA, Satoshi
AU - Hasegawa, Shuji
AU - Chulkov, E.V.
PY - 2017
DA - 2017/06/05
PB - American Chemical Society (ACS)
SP - 3493-3500
IS - 6
VL - 17
PMID - 28545300
SN - 1530-6984
SN - 1530-6992
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2017_Hirahara,
author = {T. Hirahara and Sergey V. Eremeev and Tetsuroh Shirasawa and Yuma Okuyama and Takayuki Kubo and Ryosuke Nakanishi and Ryota Akiyama and A. Takayama and T. Hajiri and Shin-ichiro Ideta and Masaharu Matsunami and Kazuki Sumida and Koji Miyamoto and Yasumasa Takagi and K. Tanaka and T. Okuda and Toshihiko Yokoyama and Satoshi KIMURA and Shuji Hasegawa and E.V. Chulkov},
title = {Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer},
journal = {Nano Letters},
year = {2017},
volume = {17},
publisher = {American Chemical Society (ACS)},
month = {jun},
url = {https://doi.org/10.1021/acs.nanolett.7b00560},
number = {6},
pages = {3493--3500},
doi = {10.1021/acs.nanolett.7b00560}
}
MLA
Cite this
MLA Copy
Hirahara, T., et al. “Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer.” Nano Letters, vol. 17, no. 6, Jun. 2017, pp. 3493-3500. https://doi.org/10.1021/acs.nanolett.7b00560.