volume 2 issue 4 pages 876-881

Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange

Manuel Kolb 3
Reshma Rao 3
Rasmus Frydendal 4
Fazal Raziq 5
Niels Bendtsen Halck 7
Tejs Vegge 7
Yang Shao-Horn 1, 3, 6
Publication typeJournal Article
Publication date2017-03-20
scimago Q1
wos Q1
SJR6.799
CiteScore29.6
Impact factor18.2
ISSN23808195
Materials Chemistry
Chemistry (miscellaneous)
Energy Engineering and Power Technology
Fuel Technology
Renewable Energy, Sustainability and the Environment
Abstract
RuO2 catalysts exhibit record activities toward the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by density functional theory, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
ACS Catalysis
16 publications, 4.6%
Nature Communications
14 publications, 4.02%
Journal of Materials Chemistry A
12 publications, 3.45%
Journal of Physical Chemistry C
11 publications, 3.16%
Advanced Energy Materials
10 publications, 2.87%
International Journal of Hydrogen Energy
10 publications, 2.87%
Advanced Materials
10 publications, 2.87%
Journal of the American Chemical Society
8 publications, 2.3%
ACS Energy Letters
7 publications, 2.01%
Electrochimica Acta
7 publications, 2.01%
Small
7 publications, 2.01%
Angewandte Chemie - International Edition
7 publications, 2.01%
Angewandte Chemie
7 publications, 2.01%
Energy and Environmental Science
7 publications, 2.01%
Journal of Catalysis
6 publications, 1.72%
Applied Catalysis B: Environmental
6 publications, 1.72%
Journal of Alloys and Compounds
6 publications, 1.72%
ChemElectroChem
6 publications, 1.72%
ACS Applied Energy Materials
6 publications, 1.72%
Chemical Reviews
6 publications, 1.72%
ChemCatChem
5 publications, 1.44%
Chemical Society Reviews
5 publications, 1.44%
Inorganic Chemistry
4 publications, 1.15%
ACS Applied Nano Materials
4 publications, 1.15%
Advanced Functional Materials
3 publications, 0.86%
Advanced Science
3 publications, 0.86%
Journal of Electroanalytical Chemistry
3 publications, 0.86%
Journal of Colloid and Interface Science
3 publications, 0.86%
Materials Today Energy
3 publications, 0.86%
Current Opinion in Electrochemistry
3 publications, 0.86%
2
4
6
8
10
12
14
16

Publishers

10
20
30
40
50
60
70
80
90
Elsevier
87 publications, 25%
Wiley
81 publications, 23.28%
American Chemical Society (ACS)
79 publications, 22.7%
Royal Society of Chemistry (RSC)
49 publications, 14.08%
Springer Nature
24 publications, 6.9%
MDPI
8 publications, 2.3%
IOP Publishing
5 publications, 1.44%
AIP Publishing
2 publications, 0.57%
Frontiers Media S.A.
2 publications, 0.57%
Korean Society of Industrial Engineering Chemistry
2 publications, 0.57%
American Association for the Advancement of Science (AAAS)
2 publications, 0.57%
American Vacuum Society
1 publication, 0.29%
Nonferrous Metals Society of China
1 publication, 0.29%
Walter de Gruyter
1 publication, 0.29%
Oxford University Press
1 publication, 0.29%
Research Square Platform LLC
1 publication, 0.29%
Tsinghua University Press
1 publication, 0.29%
10
20
30
40
50
60
70
80
90
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
348
Share
Cite this
GOST |
Cite this
GOST Copy
Stoerzinger K. A. et al. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange // ACS Energy Letters. 2017. Vol. 2. No. 4. pp. 876-881.
GOST all authors (up to 50) Copy
Stoerzinger K. A., Diaz‐Morales O., Kolb M., Rao R., Frydendal R., Raziq F., Renshaw Wang X., Halck N. B., Rossmeisl J., Hansen H. A., Vegge T., Stephens I. E. L., Koper M. T., Shao-Horn Y. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange // ACS Energy Letters. 2017. Vol. 2. No. 4. pp. 876-881.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/acsenergylett.7b00135
UR - https://doi.org/10.1021/acsenergylett.7b00135
TI - Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange
T2 - ACS Energy Letters
AU - Stoerzinger, Kelsey A.
AU - Diaz‐Morales, Oscar
AU - Kolb, Manuel
AU - Rao, Reshma
AU - Frydendal, Rasmus
AU - Raziq, Fazal
AU - Renshaw Wang, X
AU - Halck, Niels Bendtsen
AU - Rossmeisl, Jan
AU - Hansen, Heine A.
AU - Vegge, Tejs
AU - Stephens, Ifan E. L.
AU - Koper, Marc T.
AU - Shao-Horn, Yang
PY - 2017
DA - 2017/03/20
PB - American Chemical Society (ACS)
SP - 876-881
IS - 4
VL - 2
SN - 2380-8195
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2017_Stoerzinger,
author = {Kelsey A. Stoerzinger and Oscar Diaz‐Morales and Manuel Kolb and Reshma Rao and Rasmus Frydendal and Fazal Raziq and X Renshaw Wang and Niels Bendtsen Halck and Jan Rossmeisl and Heine A. Hansen and Tejs Vegge and Ifan E. L. Stephens and Marc T. Koper and Yang Shao-Horn},
title = {Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange},
journal = {ACS Energy Letters},
year = {2017},
volume = {2},
publisher = {American Chemical Society (ACS)},
month = {mar},
url = {https://doi.org/10.1021/acsenergylett.7b00135},
number = {4},
pages = {876--881},
doi = {10.1021/acsenergylett.7b00135}
}
MLA
Cite this
MLA Copy
Stoerzinger, Kelsey A., et al. “Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange.” ACS Energy Letters, vol. 2, no. 4, Mar. 2017, pp. 876-881. https://doi.org/10.1021/acsenergylett.7b00135.