Open Access
Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction
Тип публикации: Journal Article
Дата публикации: 2017-10-04
scimago Q1
wos Q2
БС1
SJR: 0.773
CiteScore: 7.1
Impact factor: 4.3
ISSN: 24701343
PubMed ID:
30023518
General Chemistry
General Chemical Engineering
Краткое описание
In computational chemistry and chemoinformatics, the support vector machine (SVM) algorithm is among the most widely used machine learning methods for the identification of new active compounds. In addition, support vector regression (SVR) has become a preferred approach for modeling nonlinear structure–activity relationships and predicting compound potency values. For the closely related SVM and SVR methods, fingerprints (i.e., bit string or feature set representations of chemical structure and properties) are generally preferred descriptors. Herein, we have compared SVM and SVR calculations for the same compound data sets to evaluate which features are responsible for predictions. On the basis of systematic feature weight analysis, rather surprising results were obtained. Fingerprint features were frequently identified that contributed differently to the corresponding SVM and SVR models. The overlap between feature sets determining the predictive performance of SVM and SVR was only very small. Furthermore, features were identified that had opposite effects on SVM and SVR predictions. Feature weight analysis in combination with feature mapping made it also possible to interpret individual predictions, thus balancing the black box character of SVM/SVR modeling.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
ACS Omega
4 публикации, 4.49%
|
|
|
Journal of Computer-Aided Molecular Design
3 публикации, 3.37%
|
|
|
Lecture Notes in Networks and Systems
3 публикации, 3.37%
|
|
|
Sensors
2 публикации, 2.25%
|
|
|
Frontiers in Chemistry
2 публикации, 2.25%
|
|
|
Journal of Chemical Information and Modeling
2 публикации, 2.25%
|
|
|
Journal of Medicinal Chemistry
2 публикации, 2.25%
|
|
|
Studies in Computational Intelligence
2 публикации, 2.25%
|
|
|
Geoscientific Model Development
1 публикация, 1.12%
|
|
|
Bulletin of the Chemical Society of Japan
1 публикация, 1.12%
|
|
|
Healthcare
1 публикация, 1.12%
|
|
|
International Journal of Molecular Sciences
1 публикация, 1.12%
|
|
|
Water (Switzerland)
1 публикация, 1.12%
|
|
|
Insects
1 публикация, 1.12%
|
|
|
Frontiers in Human Neuroscience
1 публикация, 1.12%
|
|
|
Polymers
1 публикация, 1.12%
|
|
|
Mathematics
1 публикация, 1.12%
|
|
|
Arabian Journal for Science and Engineering
1 публикация, 1.12%
|
|
|
Journal of Scientific Computing
1 публикация, 1.12%
|
|
|
Neural Computing and Applications
1 публикация, 1.12%
|
|
|
Journal of Molecular Structure
1 публикация, 1.12%
|
|
|
Scientific Reports
1 публикация, 1.12%
|
|
|
Defence Technology
1 публикация, 1.12%
|
|
|
Machine Learning with Applications
1 публикация, 1.12%
|
|
|
Construction and Building Materials
1 публикация, 1.12%
|
|
|
Expert Systems with Applications
1 публикация, 1.12%
|
|
|
Current Opinion in Structural Biology
1 публикация, 1.12%
|
|
|
Cell Chemical Biology
1 публикация, 1.12%
|
|
|
Preventive Veterinary Medicine
1 публикация, 1.12%
|
|
|
1
2
3
4
|
Издатели
|
2
4
6
8
10
12
14
16
18
20
|
|
|
Springer Nature
19 публикаций, 21.35%
|
|
|
Elsevier
17 публикаций, 19.1%
|
|
|
MDPI
12 публикаций, 13.48%
|
|
|
American Chemical Society (ACS)
11 публикаций, 12.36%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
9 публикаций, 10.11%
|
|
|
Wiley
5 публикаций, 5.62%
|
|
|
Taylor & Francis
4 публикации, 4.49%
|
|
|
Oxford University Press
3 публикации, 3.37%
|
|
|
Frontiers Media S.A.
3 публикации, 3.37%
|
|
|
Copernicus
1 публикация, 1.12%
|
|
|
Hindawi Limited
1 публикация, 1.12%
|
|
|
Annual Reviews
1 публикация, 1.12%
|
|
|
SAGE
1 публикация, 1.12%
|
|
|
Walter de Gruyter
1 публикация, 1.12%
|
|
|
The Electrochemical Society
1 публикация, 1.12%
|
|
|
2
4
6
8
10
12
14
16
18
20
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
89
Всего цитирований:
89
Цитирований c 2024:
19
(21%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Rodríguez Pérez R., Vogt M., Bajorath J. Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction // ACS Omega. 2017. Vol. 2. No. 10. pp. 6371-6379.
ГОСТ со всеми авторами (до 50)
Скопировать
Rodríguez Pérez R., Vogt M., Bajorath J. Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction // ACS Omega. 2017. Vol. 2. No. 10. pp. 6371-6379.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1021/acsomega.7b01079
UR - https://doi.org/10.1021/acsomega.7b01079
TI - Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction
T2 - ACS Omega
AU - Rodríguez Pérez, Raquel
AU - Vogt, Martin
AU - Bajorath, Jürgen
PY - 2017
DA - 2017/10/04
PB - American Chemical Society (ACS)
SP - 6371-6379
IS - 10
VL - 2
PMID - 30023518
SN - 2470-1343
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2017_Rodríguez Pérez,
author = {Raquel Rodríguez Pérez and Martin Vogt and Jürgen Bajorath},
title = {Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction},
journal = {ACS Omega},
year = {2017},
volume = {2},
publisher = {American Chemical Society (ACS)},
month = {oct},
url = {https://doi.org/10.1021/acsomega.7b01079},
number = {10},
pages = {6371--6379},
doi = {10.1021/acsomega.7b01079}
}
Цитировать
MLA
Скопировать
Rodríguez Pérez, Raquel, et al. “Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction.” ACS Omega, vol. 2, no. 10, Oct. 2017, pp. 6371-6379. https://doi.org/10.1021/acsomega.7b01079.
Профили