Journal of Chemical Information and Modeling, volume 47, issue 2, pages 488-508

Evaluating Virtual Screening Methods:  Good and Bad Metrics for the “Early Recognition” Problem

Jean-Francois Truchon 1
Christopher I. Bayly 1
1
 
Department of Medicinal Chemistry, Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Québec, Canada H9H 3L1
Publication typeJournal Article
Publication date2007-02-09
scimago Q1
SJR1.396
CiteScore9.8
Impact factor5.6
ISSN15499596, 1549960X
PubMed ID:  17288412
General Chemistry
Computer Science Applications
General Chemical Engineering
Library and Information Sciences
Abstract
Many metrics are currently used to evaluate the performance of ranking methods in virtual screening (VS), for instance, the area under the receiver operating characteristic curve (ROC), the area under the accumulation curve (AUAC), the average rank of actives, the enrichment factor (EF), and the robust initial enhancement (RIE) proposed by Sheridan et al. In this work, we show that the ROC, the AUAC, and the average rank metrics have the same inappropriate behaviors that make them poor metrics for comparing VS methods whose purpose is to rank actives early in an ordered list (the "early recognition problem"). In doing so, we derive mathematical formulas that relate those metrics together. Moreover, we show that the EF metric is not sensitive to ranking performance before and after the cutoff. Instead, we formally generalize the ROC metric to the early recognition problem which leads us to propose a novel metric called the Boltzmann-enhanced discrimination of receiver operating characteristic that turns out to contain the discrimination power of the RIE metric but incorporates the statistical significance from ROC and its well-behaved boundaries. Finally, two major sources of errors, namely, the statistical error and the "saturation effects", are examined. This leads to practical recommendations for the number of actives, the number of inactives, and the "early recognition" importance parameter that one should use when comparing ranking methods. Although this work is applied specifically to VS, it is general and can be used to analyze any method that needs to segregate actives toward the front of a rank-ordered list.
Found 
Found 

Top-30

Journals

20
40
60
80
100
120
140
20
40
60
80
100
120
140

Publishers

20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?