том 121 издание 24 страницы 5687-5699

Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As)

Тип публикацииJournal Article
Дата публикации1999-06-01
scimago Q1
wos Q1
БС1
SJR5.554
CiteScore22.5
Impact factor15.6
ISSN00027863, 15205126
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Краткое описание
Donor−acceptor complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, PX3, X-; Y = N, P, As) and their components have been studied using self-consistent field and hybrid Hartree−Fock/density functional (B3LYP) methods with effective core potentials. The theoretical dissociation energies of the MX3−D complexes decrease in the orders F > Cl > Br > I, Al > Ga < In, and N ≫ P ≥ As for all investigated complexes. The calculated (B3LYP/LANL2DZP) dissociation energies for ammonia adducts are on average 7 kJ mol-1 higher than those from experiment. There is no correlation between the dissociation energy and the degree of charge transfer. Complexes of ammonia and metal fluorides have mostly ionic metal−donor bonds, while the other donor−acceptor adducts are mostly covalently bonded. In addition, a significant charge redistribution between the terminal atoms leads to further electrostatic stabilization of ammonia adducts. Coulomb interactions destabilize MX3−PX3 complexes, and despite some experimental indications, the existence of these particular complexes in the gas phase is improbable. Distortion of MX3 from planarity under complex formation leads to decreasing X−M−X angles. These decreasing angles correlate well with increasing M−X bond lengths. For all investigated MX3−X- systems a strong correlation of the MX3−X- dissociation energy with the M−X bond length increase is found. Correlations between the pyramidal angle X−M−Y and the length of the adjacent M−Y bond have been found for each donor atom Y. All observed trends in structural and thermodynamic properties are qualitatively explained on the basis of a simple electrostatic model.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
Journal of Physical Chemistry A
20 публикаций, 16.67%
Inorganic Chemistry
14 публикаций, 11.67%
Journal of the American Chemical Society
6 публикаций, 5%
Journal of Molecular Structure THEOCHEM
5 публикаций, 4.17%
Coordination Chemistry Reviews
4 публикации, 3.33%
Dalton Transactions
4 публикации, 3.33%
Journal of Chemical Physics
3 публикации, 2.5%
Journal of Organometallic Chemistry
3 публикации, 2.5%
Journal of Fluorine Chemistry
3 публикации, 2.5%
Polyhedron
3 публикации, 2.5%
European Journal of Inorganic Chemistry
3 публикации, 2.5%
Journal of Computational Chemistry
3 публикации, 2.5%
Chemistry - A European Journal
3 публикации, 2.5%
Russian Journal of Inorganic Chemistry
3 публикации, 2.5%
Journal of Physical Chemistry B
2 публикации, 1.67%
Thermochimica Acta
2 публикации, 1.67%
Zeitschrift fur Anorganische und Allgemeine Chemie
2 публикации, 1.67%
Organometallics
2 публикации, 1.67%
Canadian Journal of Chemistry
1 публикация, 0.83%
Journal of Crystal Growth
1 публикация, 0.83%
Solid-State Electronics
1 публикация, 0.83%
Crystals
1 публикация, 0.83%
Journal of Thermal Analysis and Calorimetry
1 публикация, 0.83%
Journal of Chemical Crystallography
1 публикация, 0.83%
Russian Chemical Bulletin
1 публикация, 0.83%
Trends in Chemistry
1 публикация, 0.83%
Bulletin of the Korean Chemical Society
1 публикация, 0.83%
International Journal of Quantum Chemistry
1 публикация, 0.83%
Chemical Record
1 публикация, 0.83%
5
10
15
20

Издатели

5
10
15
20
25
30
35
40
45
50
American Chemical Society (ACS)
46 публикаций, 38.33%
Elsevier
25 публикаций, 20.83%
Wiley
20 публикаций, 16.67%
Royal Society of Chemistry (RSC)
9 публикаций, 7.5%
Pleiades Publishing
5 публикаций, 4.17%
AIP Publishing
4 публикации, 3.33%
Springer Nature
4 публикации, 3.33%
Canadian Science Publishing
1 публикация, 0.83%
MDPI
1 публикация, 0.83%
Taylor & Francis
1 публикация, 0.83%
Walter de Gruyter
1 публикация, 0.83%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 0.83%
5
10
15
20
25
30
35
40
45
50
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
120
Поделиться
Цитировать
ГОСТ |
Цитировать
Timoshkin A. Y. et al. Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As) // Journal of the American Chemical Society. 1999. Vol. 121. No. 24. pp. 5687-5699.
ГОСТ со всеми авторами (до 50) Скопировать
Timoshkin A. Y., Suvorov A. V., Bettinger H. F., Schaefer H. F. Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As) // Journal of the American Chemical Society. 1999. Vol. 121. No. 24. pp. 5687-5699.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/ja983408t
UR - https://doi.org/10.1021/ja983408t
TI - Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As)
T2 - Journal of the American Chemical Society
AU - Timoshkin, Alexey Y.
AU - Suvorov, Andrew V
AU - Bettinger, Holger F.
AU - Schaefer, Henry F.
PY - 1999
DA - 1999/06/01
PB - American Chemical Society (ACS)
SP - 5687-5699
IS - 24
VL - 121
SN - 0002-7863
SN - 1520-5126
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{1999_Timoshkin,
author = {Alexey Y. Timoshkin and Andrew V Suvorov and Holger F. Bettinger and Henry F. Schaefer},
title = {Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As)},
journal = {Journal of the American Chemical Society},
year = {1999},
volume = {121},
publisher = {American Chemical Society (ACS)},
month = {jun},
url = {https://doi.org/10.1021/ja983408t},
number = {24},
pages = {5687--5699},
doi = {10.1021/ja983408t}
}
MLA
Цитировать
Timoshkin, Alexey Y., et al. “Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As).” Journal of the American Chemical Society, vol. 121, no. 24, Jun. 1999, pp. 5687-5699. https://doi.org/10.1021/ja983408t.