volume 142 issue 15 pages 7161-7167

Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2

Chen Junze 1
Guigao Liu 1
Yue Zhou Zhu 2
Min Su 2
Pengfei Yin 1, 3
Xuejun Wu 4
Qipeng Lu 1
Chaoliang Tan 1
Meiting Zhao 1
Zheng Liu 1
Weimin Yang 2
Hai Li 5
Gwang Hyeon Nam 1
Liping Zhang 1
Zhenhua Chen 6
Petar Martin Radjenovic 2
Wei Huang 5, 7, 8
Hua Zhang 3, 9
Publication typeJournal Article
Publication date2020-03-24
scimago Q1
wos Q1
SJR5.554
CiteScore22.5
Impact factor15.6
ISSN00027863, 15205126
PubMed ID:  32207969
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Abstract
Understanding the reaction mechanism for the catalytic process is essential to the rational design and synthesis of highly efficient catalysts. MoS2 has been reported to be an efficient catalyst toward the electrochemical hydrogen evolution reaction (HER), but it still lacks direct experimental evidence to reveal the mechanism for MoS2-catalyzed electrochemical HER process at the atomic level. In this work, we develop a wet-chemical synthetic method to prepare the single-layer MoS2-coated polyhedral Ag core-shell heterostructure (Ag@MoS2) with tunable sizes as efficient catalysts for the electrochemical HER. The Ag@MoS2 core-shell heterostructures are used as ideal platforms for the real-time surface-enhanced Raman spectroscopy (SERS) study owing to the strong electromagnetic field generated in the plasmonic Ag core. The in situ SERS results provide solid Raman spectroscopic evidence proving the S-H bonding formation on the MoS2 surface during the HER process, suggesting that the S atom of MoS2 is the catalytic active site for the electrochemical HER. It paves the way on the design and synthesis of heterostructures for exploring their catalytic mechanism at atomic level based on the in situ SERS measurement.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
International Journal of Hydrogen Energy
11 publications, 4.42%
Angewandte Chemie - International Edition
9 publications, 3.61%
Angewandte Chemie
9 publications, 3.61%
Small
8 publications, 3.21%
Advanced Functional Materials
7 publications, 2.81%
Nano Research
6 publications, 2.41%
ACS Applied Nano Materials
6 publications, 2.41%
Journal of Materials Chemistry A
6 publications, 2.41%
New Journal of Chemistry
6 publications, 2.41%
Chemical Engineering Journal
5 publications, 2.01%
ACS applied materials & interfaces
5 publications, 2.01%
Journal of the American Chemical Society
5 publications, 2.01%
Energy and Environmental Science
5 publications, 2.01%
Applied Surface Science
4 publications, 1.61%
ACS Nano
4 publications, 1.61%
Journal of Colloid and Interface Science
3 publications, 1.2%
Chinese Journal of Catalysis
3 publications, 1.2%
Colloids and Surfaces A: Physicochemical and Engineering Aspects
3 publications, 1.2%
Journal of Energy Chemistry
3 publications, 1.2%
Chinese Chemical Letters
3 publications, 1.2%
Coordination Chemistry Reviews
3 publications, 1.2%
Nature Communications
3 publications, 1.2%
Chinese Journal of Chemistry
3 publications, 1.2%
Journal of Physical Chemistry C
3 publications, 1.2%
ACS Catalysis
3 publications, 1.2%
Dalton Transactions
3 publications, 1.2%
Chemical Communications
3 publications, 1.2%
Chemical Society Reviews
3 publications, 1.2%
Nanoscale
3 publications, 1.2%
2
4
6
8
10
12

Publishers

10
20
30
40
50
60
70
80
Elsevier
80 publications, 32.13%
Wiley
52 publications, 20.88%
Royal Society of Chemistry (RSC)
42 publications, 16.87%
American Chemical Society (ACS)
41 publications, 16.47%
Springer Nature
17 publications, 6.83%
MDPI
6 publications, 2.41%
IOP Publishing
3 publications, 1.2%
AIP Publishing
2 publications, 0.8%
Optica Publishing Group
1 publication, 0.4%
EDP Sciences
1 publication, 0.4%
Taylor & Francis
1 publication, 0.4%
Hans Publishers
1 publication, 0.4%
Research Square Platform LLC
1 publication, 0.4%
OAE Publishing Inc.
1 publication, 0.4%
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
249
Share
Cite this
GOST |
Cite this
GOST Copy
Junze C. et al. Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2 // Journal of the American Chemical Society. 2020. Vol. 142. No. 15. pp. 7161-7167.
GOST all authors (up to 50) Copy
Junze C., Liu G., Zhu Y. Z., Su M., Yin P., Wu X., Lu Q., Tan C., Zhao M., Liu Z., Yang W., Li H., Nam G. H., Zhang L., Chen Z., Huang X. L., Radjenovic P. M., Huang W., Tian Z., Li J., Zhang H. Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2 // Journal of the American Chemical Society. 2020. Vol. 142. No. 15. pp. 7161-7167.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1021/jacs.0c01649
UR - https://doi.org/10.1021/jacs.0c01649
TI - Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2
T2 - Journal of the American Chemical Society
AU - Junze, Chen
AU - Liu, Guigao
AU - Zhu, Yue Zhou
AU - Su, Min
AU - Yin, Pengfei
AU - Wu, Xuejun
AU - Lu, Qipeng
AU - Tan, Chaoliang
AU - Zhao, Meiting
AU - Liu, Zheng
AU - Yang, Weimin
AU - Li, Hai
AU - Nam, Gwang Hyeon
AU - Zhang, Liping
AU - Chen, Zhenhua
AU - Huang, Xiao Long
AU - Radjenovic, Petar Martin
AU - Huang, Wei
AU - Tian, Zhongqun
AU - Li, Jian‐Feng
AU - Zhang, Hua
PY - 2020
DA - 2020/03/24
PB - American Chemical Society (ACS)
SP - 7161-7167
IS - 15
VL - 142
PMID - 32207969
SN - 0002-7863
SN - 1520-5126
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Junze,
author = {Chen Junze and Guigao Liu and Yue Zhou Zhu and Min Su and Pengfei Yin and Xuejun Wu and Qipeng Lu and Chaoliang Tan and Meiting Zhao and Zheng Liu and Weimin Yang and Hai Li and Gwang Hyeon Nam and Liping Zhang and Zhenhua Chen and Xiao Long Huang and Petar Martin Radjenovic and Wei Huang and Zhongqun Tian and Jian‐Feng Li and Hua Zhang},
title = {Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2},
journal = {Journal of the American Chemical Society},
year = {2020},
volume = {142},
publisher = {American Chemical Society (ACS)},
month = {mar},
url = {https://doi.org/10.1021/jacs.0c01649},
number = {15},
pages = {7161--7167},
doi = {10.1021/jacs.0c01649}
}
MLA
Cite this
MLA Copy
Junze, Chen, et al. “Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2.” Journal of the American Chemical Society, vol. 142, no. 15, Mar. 2020, pp. 7161-7167. https://doi.org/10.1021/jacs.0c01649.