Journal of Physical Chemistry C, volume 115, issue 45, pages 22089-22109

Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale

Publication typeJournal Article
Publication date2011-10-11
scimago Q1
SJR0.957
CiteScore6.5
Impact factor3.3
ISSN19327447, 19327455
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Physical and Theoretical Chemistry
General Energy
Abstract
The ability to confine electrons and holes in semiconductor quantum dots (QDs) in the form of excitons creates an electronic structure which is both novel and potentially useful for a variety of applications. Upon optical excitation of the dot, the initial excitonic state may be electronically hot. The relaxation dynamics of this hot exciton is the primary event which controls key processes such as optical gain, hot carrier extraction, and multiple exciton generation. Here, we describe femtosecond state-resolved pump/probe experiments on colloidal CdSe quantum dots that provide the first quantitative measure of excitonic state-to-state transition rates. The measurements and modeling here reveal that there are multiple paths by which hot electrons and hot holes relax. The immediate result is that there is no phonon bottleneck for electrons or holes for excitons in quantum dots. This absence of phonon-based relaxation is confirmed by independent measurements of weak exciton–phonon coupling between the vario...
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
70
10
20
30
40
50
60
70

Publishers

20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?