ACS Nano, volume 9, issue 1, pages 941-949

Filamentary Switching: Synaptic Plasticity through Device Volatility

Publication typeJournal Article
Publication date2015-01-15
Journal: ACS Nano
scimago Q1
SJR4.593
CiteScore26.0
Impact factor15.8
ISSN19360851, 1936086X
PubMed ID:  25581249
General Physics and Astronomy
General Materials Science
General Engineering
Abstract
Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show that a more complex filament shape, such as dendritic paths of variable density and width, can permit the short- and long-term processes to be controlled independently. Our solid-state device is strongly analogous to biological synapses, as indicated by the interpretation of the results from the framework of a phenomenological model developed for biological synapses. We describe a single memristive element containing a rich panel of features, which will be of benefit to future neuromorphic hardware systems.
Found 

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

5
10
15
20
25
30
35
40
45
5
10
15
20
25
30
35
40
45
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?