Nature, volume 399, issue 6738, pages 772-776

Hox genes in brachiopods and priapulids and protostome evolution

Renaud de Rosa 1
Jennifer K. Grenier 2
Tatiana Andreeva 3
Charles E. Cook 4
André Adoutte 1
Michael Akam 4
Sean B. Carroll 2
Guillaume Balavoine 4, 5
Publication typeJournal Article
Publication date1999-06-01
Journal: Nature
scimago Q1
SJR18.509
CiteScore90.0
Impact factor50.5
ISSN00280836, 14764687
PubMed ID:  10391241
Multidisciplinary
Abstract
Understanding the early evolution of animal body plans requires knowledge both of metazoan phylogeny and of the genetic and developmental changes involved in the emergence of particular forms. Recent 18S ribosomal RNA phylogenies suggest a three-branched tree for the Bilateria comprising the deuterostomes and two great protostome clades, the lophotrochozoans1 and ecdysozoans2. Here, we show that the complement of Hox genes in critical protostome phyla reflects these phylogenetic relationships and reveals the early evolution of developmental regulatory potential in bilaterians. We have identified Hox genes that are shared by subsets of protostome phyla. These include a diverged pair of posterior (Abdominal-B -like) genes in both a brachiopod and a polychaete annelid, which supports the lophotrochozoan assemblage, and a distinct posterior Hox gene shared by a priapulid, a nematode and the arthropods, which supports the ecdysozoan clade. The ancestors of each of these two major protostome lineages had a minimum of eight to ten Hox genes. The major period of Hox gene expansion and diversification thus occurred before the radiation of each of the three great bilaterian clades.
Found 

Top-30

Journals

5
10
15
20
25
30
5
10
15
20
25
30

Publishers

20
40
60
80
100
120
20
40
60
80
100
120
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?