Nature Materials, volume 13, issue 8, pages 796-801

Improved performance and stability in quantum dot solar cells through band alignment engineering

Publication typeJournal Article
Publication date2014-05-25
Journal: Nature Materials
scimago Q1
SJR14.231
CiteScore62.2
Impact factor37.2
ISSN14761122, 14764660
PubMed ID:  24859641
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing, all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates.

Top-30

Journals

10
20
30
40
50
60
70
80
90
10
20
30
40
50
60
70
80
90

Publishers

50
100
150
200
250
300
350
400
450
500
50
100
150
200
250
300
350
400
450
500
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?