Nature Nanotechnology, volume 7, issue 6, pages 369-373

Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

Liangfeng Sun 1, 2
Joshua J Choi 1, 3
David Stachnik 1
Adam C. Bartnik 1
Byung Ryool Hyun 1
George G Malliaras 4, 5
Tobias Hanrath 3
Frank W Wise 1
Publication typeJournal Article
Publication date2012-05-06
scimago Q1
SJR14.577
CiteScore59.7
Impact factor38.1
ISSN17483387, 17483395
Atomic and Molecular Physics, and Optics
Condensed Matter Physics
General Materials Science
Electrical and Electronic Engineering
Bioengineering
Biomedical Engineering
Abstract
Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.
Found 
Found 

Top-30

Journals

5
10
15
20
25
5
10
15
20
25

Publishers

20
40
60
80
100
120
140
20
40
60
80
100
120
140
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?