Open Access
Open access
volume 12 issue 1 publication number 6253

Objective comparison of methods to decode anomalous diffusion

Gorka Muñoz-Gil 1
Miguel-Ángel García-March 3
Erez Aghion 4
Aykut Argun 2
Chang Beom Hong 5
Tom Bland 6
Stefano Bo 4
J Alberto Conejero 3
Nicolás Firbas 3
Òscar Garibo I Orts 3
Alessia Gentili 7
Zihan Huang 8
Jae-Hyung Jeon 5
Hélène Kabbech 9
YEONGJIN KIM 5
Patrycja Kowalek 10
D Krapf 11
Hanna Loch-Olszewska 10
Michael A. Lomholt 12
Philipp G. Meyer 4
Seongyu Park 5
Borja Requena 1
Smal Ihor 9
Taegeun Song 5, 14, 15
Janusz Szwabiński 10
Samudrajit Thapa 16, 17, 18
Giorgio Volpe 7
A. Widera 19
Maciej Lewenstein 1, 20
Ralf Metzler 16
Carlo Alberto Manzo 1, 21
Publication typeJournal Article
Publication date2021-10-29
scimago Q1
wos Q1
SJR4.761
CiteScore23.4
Impact factor15.7
ISSN20411723
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Abstract
Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers. Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics but often difficult to characterize. Here the authors compare approaches for single trajectory analysis through an open competition, showing that machine learning methods outperform classical approaches.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
18
20
Journal of Physics A: Mathematical and Theoretical
19 publications, 9.36%
Physical Review E
18 publications, 8.87%
Journal of Physics Photonics
13 publications, 6.4%
Physical Review Research
10 publications, 4.93%
New Journal of Physics
6 publications, 2.96%
Scientific Reports
5 publications, 2.46%
Nature Communications
5 publications, 2.46%
Chaos, Solitons and Fractals
5 publications, 2.46%
Physical Review Letters
5 publications, 2.46%
Chaos
4 publications, 1.97%
Physica A: Statistical Mechanics and its Applications
4 publications, 1.97%
Physical Chemistry Chemical Physics
4 publications, 1.97%
F1000Research
3 publications, 1.48%
Proceedings of the National Academy of Sciences of the United States of America
3 publications, 1.48%
eLife
3 publications, 1.48%
Biophysical Journal
3 publications, 1.48%
Mathematics
2 publications, 0.99%
International Journal of Molecular Sciences
2 publications, 0.99%
Small
2 publications, 0.99%
Soft Matter
2 publications, 0.99%
Journal of the American Chemical Society
2 publications, 0.99%
Communications in Nonlinear Science and Numerical Simulation
2 publications, 0.99%
Science advances
2 publications, 0.99%
bioRxiv
2 publications, 0.99%
Reports on Progress in Physics
2 publications, 0.99%
Applied Sciences (Switzerland)
2 publications, 0.99%
Nature Computational Science
2 publications, 0.99%
Journal of Chemical Physics
2 publications, 0.99%
Journal of Molecular Biology
2 publications, 0.99%
2
4
6
8
10
12
14
16
18
20

Publishers

5
10
15
20
25
30
35
40
45
IOP Publishing
45 publications, 22.17%
American Physical Society (APS)
36 publications, 17.73%
Elsevier
26 publications, 12.81%
Springer Nature
23 publications, 11.33%
Cold Spring Harbor Laboratory
11 publications, 5.42%
MDPI
9 publications, 4.43%
American Chemical Society (ACS)
8 publications, 3.94%
Wiley
7 publications, 3.45%
AIP Publishing
6 publications, 2.96%
Royal Society of Chemistry (RSC)
6 publications, 2.96%
Institute of Electrical and Electronics Engineers (IEEE)
5 publications, 2.46%
F1000 Research
3 publications, 1.48%
Oxford University Press
3 publications, 1.48%
Proceedings of the National Academy of Sciences (PNAS)
3 publications, 1.48%
eLife Sciences Publications
3 publications, 1.48%
The Royal Society
2 publications, 0.99%
Frontiers Media S.A.
2 publications, 0.99%
American Association for the Advancement of Science (AAAS)
2 publications, 0.99%
Public Library of Science (PLoS)
1 publication, 0.49%
Research Square Platform LLC
1 publication, 0.49%
S. Karger AG
1 publication, 0.49%
5
10
15
20
25
30
35
40
45
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
203
Share
Cite this
GOST |
Cite this
GOST Copy
Muñoz-Gil G. et al. Objective comparison of methods to decode anomalous diffusion // Nature Communications. 2021. Vol. 12. No. 1. 6253
GOST all authors (up to 50) Copy
Muñoz-Gil G., Volpe G., García-March M., Aghion E., Argun A., Hong C. B., Bland T., Bo S., Conejero J. A., Firbas N., Garibo I Orts Ò., Gentili A., Huang Z., Jeon J., Kabbech H., KIM Y., Kowalek P., Krapf D., Loch-Olszewska H., Lomholt M. A., Masson J., Meyer P. G., Park S., Requena B., Ihor S., Song T., Szwabiński J., Thapa S., Verdier H., Volpe G., Widera A., Lewenstein M., Metzler R., Manzo C. A. Objective comparison of methods to decode anomalous diffusion // Nature Communications. 2021. Vol. 12. No. 1. 6253
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41467-021-26320-w
UR - https://doi.org/10.1038/s41467-021-26320-w
TI - Objective comparison of methods to decode anomalous diffusion
T2 - Nature Communications
AU - Muñoz-Gil, Gorka
AU - Volpe, Giovanni
AU - García-March, Miguel-Ángel
AU - Aghion, Erez
AU - Argun, Aykut
AU - Hong, Chang Beom
AU - Bland, Tom
AU - Bo, Stefano
AU - Conejero, J Alberto
AU - Firbas, Nicolás
AU - Garibo I Orts, Òscar
AU - Gentili, Alessia
AU - Huang, Zihan
AU - Jeon, Jae-Hyung
AU - Kabbech, Hélène
AU - KIM, YEONGJIN
AU - Kowalek, Patrycja
AU - Krapf, D
AU - Loch-Olszewska, Hanna
AU - Lomholt, Michael A.
AU - Masson, Jean-Baptiste
AU - Meyer, Philipp G.
AU - Park, Seongyu
AU - Requena, Borja
AU - Ihor, Smal
AU - Song, Taegeun
AU - Szwabiński, Janusz
AU - Thapa, Samudrajit
AU - Verdier, Hippolyte
AU - Volpe, Giorgio
AU - Widera, A.
AU - Lewenstein, Maciej
AU - Metzler, Ralf
AU - Manzo, Carlo Alberto
PY - 2021
DA - 2021/10/29
PB - Springer Nature
IS - 1
VL - 12
PMID - 34716305
SN - 2041-1723
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2021_Muñoz-Gil,
author = {Gorka Muñoz-Gil and Giovanni Volpe and Miguel-Ángel García-March and Erez Aghion and Aykut Argun and Chang Beom Hong and Tom Bland and Stefano Bo and J Alberto Conejero and Nicolás Firbas and Òscar Garibo I Orts and Alessia Gentili and Zihan Huang and Jae-Hyung Jeon and Hélène Kabbech and YEONGJIN KIM and Patrycja Kowalek and D Krapf and Hanna Loch-Olszewska and Michael A. Lomholt and Jean-Baptiste Masson and Philipp G. Meyer and Seongyu Park and Borja Requena and Smal Ihor and Taegeun Song and Janusz Szwabiński and Samudrajit Thapa and Hippolyte Verdier and Giorgio Volpe and A. Widera and Maciej Lewenstein and Ralf Metzler and Carlo Alberto Manzo},
title = {Objective comparison of methods to decode anomalous diffusion},
journal = {Nature Communications},
year = {2021},
volume = {12},
publisher = {Springer Nature},
month = {oct},
url = {https://doi.org/10.1038/s41467-021-26320-w},
number = {1},
pages = {6253},
doi = {10.1038/s41467-021-26320-w}
}