Open Access
Open access
том 5 издание 1 номер публикации 108

Reliable and explainable machine-learning methods for accelerated material discovery

Тип публикацииJournal Article
Дата публикации2019-11-14
scimago Q1
wos Q1
БС1
SJR2.835
CiteScore16.3
Impact factor11.9
ISSN20573960
Computer Science Applications
General Materials Science
Mechanics of Materials
Modeling and Simulation
Краткое описание
Despite ML’s impressive performance in commercial applications, several unique challenges exist when applying ML in materials science applications. In such a context, the contributions of this work are twofold. First, we identify common pitfalls of existing ML techniques when learning from underrepresented/imbalanced material data. Specifically, we show that with imbalanced data, standard methods for assessing quality of ML models break down and lead to misleading conclusions. Furthermore, we find that the model’s own confidence score cannot be trusted and model introspection methods (using simpler models) do not help as they result in loss of predictive performance (reliability-explainability trade-off). Second, to overcome these challenges, we propose a general-purpose explainable and reliable machine-learning framework. Specifically, we propose a generic pipeline that employs an ensemble of simpler models to reliably predict material properties. We also propose a transfer learning technique and show that the performance loss due to models’ simplicity can be overcome by exploiting correlations among different material properties. A new evaluation metric and a trust score to better quantify the confidence in the predictions are also proposed. To improve the interpretability, we add a rationale generator component to our framework which provides both model-level and decision-level explanations. Finally, we demonstrate the versatility of our technique on two applications: (1) predicting properties of crystalline compounds and (2) identifying potentially stable solar cell materials. We also point to some outstanding issues yet to be resolved for a successful application of ML in material science.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
Computational Materials Science
10 публикаций, 6.49%
npj Computational Materials
4 публикации, 2.6%
Physical Review Materials
4 публикации, 2.6%
Physical Chemistry Chemical Physics
4 публикации, 2.6%
IEEE Access
4 публикации, 2.6%
Nature Communications
3 публикации, 1.95%
Scientific Reports
2 публикации, 1.3%
Acta Materialia
2 публикации, 1.3%
Materials and Design
2 публикации, 1.3%
Advanced Theory and Simulations
2 публикации, 1.3%
Journal of Physical Chemistry C
2 публикации, 1.3%
Digital Discovery
2 публикации, 1.3%
Machine Learning: Science and Technology
2 публикации, 1.3%
Materials Today Communications
2 публикации, 1.3%
Journal of Applied Physics
1 публикация, 0.65%
APL Materials
1 публикация, 0.65%
Journal of Mechanical Design, Transactions Of the ASME
1 публикация, 0.65%
Tissue Engineering - Part A.
1 публикация, 0.65%
SIAM Journal on Mathematics of Data Science
1 публикация, 0.65%
Polymers
1 публикация, 0.65%
Data
1 публикация, 0.65%
Fluids
1 публикация, 0.65%
Crystals
1 публикация, 0.65%
Healthcare
1 публикация, 0.65%
Frontiers in Cardiovascular Medicine
1 публикация, 0.65%
Computers, Materials and Continua
1 публикация, 0.65%
Applied Sciences (Switzerland)
1 публикация, 0.65%
Optical and Quantum Electronics
1 публикация, 0.65%
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
1 публикация, 0.65%
2
4
6
8
10

Издатели

5
10
15
20
25
30
35
40
Elsevier
38 публикаций, 24.68%
Springer Nature
26 публикаций, 16.88%
American Chemical Society (ACS)
14 публикаций, 9.09%
Institute of Electrical and Electronics Engineers (IEEE)
14 публикаций, 9.09%
Wiley
13 публикаций, 8.44%
Royal Society of Chemistry (RSC)
10 публикаций, 6.49%
MDPI
9 публикаций, 5.84%
IOP Publishing
6 публикаций, 3.9%
American Physical Society (APS)
4 публикации, 2.6%
Taylor & Francis
3 публикации, 1.95%
AIP Publishing
2 публикации, 1.3%
Frontiers Media S.A.
2 публикации, 1.3%
Association for Computing Machinery (ACM)
2 публикации, 1.3%
ASME International
1 публикация, 0.65%
Mary Ann Liebert
1 публикация, 0.65%
Society for Industrial and Applied Mathematics (SIAM)
1 публикация, 0.65%
Tech Science Press
1 публикация, 0.65%
Cambridge University Press
1 публикация, 0.65%
Public Library of Science (PLoS)
1 публикация, 0.65%
Begell House
1 публикация, 0.65%
Optica Publishing Group
1 публикация, 0.65%
American Association for the Advancement of Science (AAAS)
1 публикация, 0.65%
OAE Publishing Inc.
1 публикация, 0.65%
Oxford University Press
1 публикация, 0.65%
5
10
15
20
25
30
35
40
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
154
Поделиться
Цитировать
ГОСТ |
Цитировать
Kailkhura B. et al. Reliable and explainable machine-learning methods for accelerated material discovery // npj Computational Materials. 2019. Vol. 5. No. 1. 108
ГОСТ со всеми авторами (до 50) Скопировать
Kailkhura B., Gallagher B., Kim S., Hiszpanski A., Han T. Y. Reliable and explainable machine-learning methods for accelerated material discovery // npj Computational Materials. 2019. Vol. 5. No. 1. 108
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41524-019-0248-2
UR - https://doi.org/10.1038/s41524-019-0248-2
TI - Reliable and explainable machine-learning methods for accelerated material discovery
T2 - npj Computational Materials
AU - Kailkhura, Bhavya
AU - Gallagher, Brian
AU - Kim, Sookyung
AU - Hiszpanski, Anna
AU - Han, T. Yong-Jin
PY - 2019
DA - 2019/11/14
PB - Springer Nature
IS - 1
VL - 5
SN - 2057-3960
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Kailkhura,
author = {Bhavya Kailkhura and Brian Gallagher and Sookyung Kim and Anna Hiszpanski and T. Yong-Jin Han},
title = {Reliable and explainable machine-learning methods for accelerated material discovery},
journal = {npj Computational Materials},
year = {2019},
volume = {5},
publisher = {Springer Nature},
month = {nov},
url = {https://doi.org/10.1038/s41524-019-0248-2},
number = {1},
pages = {108},
doi = {10.1038/s41524-019-0248-2}
}