volume 16 issue 12 pages 1337-1341

Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances

Kyusup Lee 1
Dong-Kyu Lee 2
Dongsheng Yang 1
Rahul Mishra 1, 3
Dong Jun Kim 1
Sheng Liu 4
Qihua Xiong 5, 6, 7
Se Kwon Kim 8
Kyungjin Lee 8
Hyunsoo Yang 1
Publication typeJournal Article
Publication date2021-10-25
scimago Q1
wos Q1
SJR14.612
CiteScore62.2
Impact factor34.9
ISSN17483387, 17483395
Atomic and Molecular Physics, and Optics
Condensed Matter Physics
General Materials Science
Electrical and Electronic Engineering
Bioengineering
Biomedical Engineering
Abstract
Magnon-mediated angular-momentum flow in antiferromagnets may become a design element for energy-efficient, low-dissipation and high-speed spintronic devices1,2. Owing to their low energy dissipation, antiferromagnetic magnons can propagate over micrometre distances3. However, direct observation of their high-speed propagation has been elusive due to the lack of sufficiently fast probes2. Here we measure the antiferromagnetic magnon propagation in the time domain at the nanoscale (≤50 nm) with optical-driven terahertz emission. In non-magnetic-Bi2Te3/antiferromagnetic-insulator-NiO/ferromagnetic-Co trilayers, we observe a magnon velocity of ~650 km s–1 in the NiO layer. This velocity far exceeds previous estimations of the maximum magnon group velocity of ~40 km s–1, which were based on the magnon dispersion measurements of NiO using inelastic neutron scattering4,5. Our theory suggests that for magnon propagation at the nanoscale, a finite damping makes the dispersion anomalous for small magnon wavenumbers and yields a superluminal-like magnon velocity. Given the generality of finite dissipation in materials, our results strengthen the prospects of ultrafast nanodevices using antiferromagnetic magnons. Magnon-mediated angular-momentum flow in antiferromagnets may become a design element for energy-efficient, low-dissipation and high-speed spintronic devices. Here, terahertz emission measurements in magnetic multilayers unveil a superluminal-like magnon velocity of ~650 km s–1 in the antiferromagnetic insulator NiO at nanoscale distances.
Found 
Found 

Top-30

Journals

1
2
3
4
5
Applied Physics Reviews
5 publications, 9.62%
Physical Review B
5 publications, 9.62%
Nano Letters
4 publications, 7.69%
Advanced Materials
3 publications, 5.77%
Journal Physics D: Applied Physics
3 publications, 5.77%
Physical Review Applied
2 publications, 3.85%
New Journal of Physics
2 publications, 3.85%
Nature Materials
2 publications, 3.85%
Advanced Functional Materials
2 publications, 3.85%
Applied Physics Express
2 publications, 3.85%
Physical Review Letters
2 publications, 3.85%
Journal of Applied Physics
2 publications, 3.85%
Materials Today
1 publication, 1.92%
Journal of Magnetism and Magnetic Materials
1 publication, 1.92%
Inorganic Chemistry
1 publication, 1.92%
Optica
1 publication, 1.92%
Science advances
1 publication, 1.92%
Nanophotonics
1 publication, 1.92%
ACS Physical Chemistry Au
1 publication, 1.92%
Proceedings of the National Academy of Sciences of the United States of America
1 publication, 1.92%
npj Spintronics
1 publication, 1.92%
Nature Nanotechnology
1 publication, 1.92%
Applied Surface Science
1 publication, 1.92%
ACS applied materials & interfaces
1 publication, 1.92%
Advanced Physics Research
1 publication, 1.92%
Science
1 publication, 1.92%
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
1 publication, 1.92%
Angewandte Chemie - International Edition
1 publication, 1.92%
Angewandte Chemie
1 publication, 1.92%
Chinese Physics B
1 publication, 1.92%
1
2
3
4
5

Publishers

1
2
3
4
5
6
7
8
9
American Physical Society (APS)
9 publications, 17.31%
Wiley
8 publications, 15.38%
AIP Publishing
7 publications, 13.46%
IOP Publishing
7 publications, 13.46%
American Chemical Society (ACS)
7 publications, 13.46%
Elsevier
4 publications, 7.69%
Springer Nature
4 publications, 7.69%
American Association for the Advancement of Science (AAAS)
2 publications, 3.85%
Optica Publishing Group
1 publication, 1.92%
Japan Society of Applied Physics
1 publication, 1.92%
Walter de Gruyter
1 publication, 1.92%
Proceedings of the National Academy of Sciences (PNAS)
1 publication, 1.92%
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
52
Share
Cite this
GOST |
Cite this
GOST Copy
Lee K. et al. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances // Nature Nanotechnology. 2021. Vol. 16. No. 12. pp. 1337-1341.
GOST all authors (up to 50) Copy
Lee K., Lee D., Yang D., Mishra R., Kim D. J., Liu S., Xiong Q., Kim S. K., Lee K., Yang H. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances // Nature Nanotechnology. 2021. Vol. 16. No. 12. pp. 1337-1341.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41565-021-00983-4
UR - https://doi.org/10.1038/s41565-021-00983-4
TI - Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances
T2 - Nature Nanotechnology
AU - Lee, Kyusup
AU - Lee, Dong-Kyu
AU - Yang, Dongsheng
AU - Mishra, Rahul
AU - Kim, Dong Jun
AU - Liu, Sheng
AU - Xiong, Qihua
AU - Kim, Se Kwon
AU - Lee, Kyungjin
AU - Yang, Hyunsoo
PY - 2021
DA - 2021/10/25
PB - Springer Nature
SP - 1337-1341
IS - 12
VL - 16
PMID - 34697489
SN - 1748-3387
SN - 1748-3395
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2021_Lee,
author = {Kyusup Lee and Dong-Kyu Lee and Dongsheng Yang and Rahul Mishra and Dong Jun Kim and Sheng Liu and Qihua Xiong and Se Kwon Kim and Kyungjin Lee and Hyunsoo Yang},
title = {Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances},
journal = {Nature Nanotechnology},
year = {2021},
volume = {16},
publisher = {Springer Nature},
month = {oct},
url = {https://doi.org/10.1038/s41565-021-00983-4},
number = {12},
pages = {1337--1341},
doi = {10.1038/s41565-021-00983-4}
}
MLA
Cite this
MLA Copy
Lee, Kyusup, et al. “Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances.” Nature Nanotechnology, vol. 16, no. 12, Oct. 2021, pp. 1337-1341. https://doi.org/10.1038/s41565-021-00983-4.