Nature, volume 601, issue 7894, pages 562-567

Unconventional spectral signature of Tc in a pure d-wave superconductor

Su Di Chen 1, 2, 3, 4
Makoto Hashimoto 5
Yu He 1, 2, 3, 6
Dongjoon Song 7, 8
Junfeng He 1, 2, 3, 9
Ying Fei Li 1, 2, 3
N. Sakamoto 7
Hiroshi Eisaki 7
Jan Zaanen 10
T.P. Devereaux 3, 11
DWAYNE G. LEE 12, 13
D. Lu 5
Z. Shen 1, 2, 3
Show full list: 13 authors
Publication typeJournal Article
Publication date2022-01-26
Journal: Nature
scimago Q1
SJR18.509
CiteScore90.0
Impact factor50.5
ISSN00280836, 14764687
Multidisciplinary
Abstract
In conventional superconductors, the phase transition into a zero-resistance and perfectly diamagnetic state is accompanied by a jump in the specific heat and the opening of a spectral gap1. In the high-transition-temperature (high-Tc) cuprates, although the transport, magnetic and thermodynamic signatures of Tc have been known since the 1980s2, the spectroscopic singularity associated with the transition remains unknown. Here we resolve this long-standing puzzle with a high-precision angle-resolved photoemission spectroscopy (ARPES) study on overdoped (Bi,Pb)2Sr2CaCu2O8+δ (Bi2212). We first probe the momentum-resolved electronic specific heat via spectroscopy and reproduce the specific heat peak at Tc, completing the missing link for a holistic description of superconductivity. Then, by studying the full momentum, energy and temperature evolution of the spectra, we reveal that this thermodynamic anomaly arises from the singular growth of in-gap spectral intensity across Tc. Furthermore, we observe that the temperature evolution of in-gap intensity is highly anisotropic in the momentum space, and the gap itself obeys both the d-wave functional form and particle–hole symmetry. These findings support the scenario that the superconducting transition is driven by phase fluctuations. They also serve as an anchor point for understanding the Fermi arc and pseudogap phenomena in underdoped cuprates. A high-precision angle-resolved photoemission spectroscopy (ARPES) study on the superconductor Bi2212 resolves the spectroscopic singularity associated with the superconducting transition temperature, and indicates that the transition is driven by phase fluctuations.
Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?