gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota
Victòria Pascal Andreu
1
,
Hannah E. Augustijn
1, 2
,
Lianmin Chen
2, 3, 4, 5
,
Alexandra Zhernakova
2
,
Jingyuan Fu
2, 3
,
Michael A. Fischbach
6, 7, 8
,
Dylan Dodd
7, 9
,
8
Chan Zuckerberg BioHub, San Francisco, USA
|
Тип публикации: Journal Article
Дата публикации: 2023-02-13
scimago Q1
wos Q1
БС1
SJR: 19.006
CiteScore: 58.8
Impact factor: 41.7
ISSN: 10870156, 15461696
PubMed ID:
36782070
Molecular Medicine
Applied Microbiology and Biotechnology
Biotechnology
Bioengineering
Biomedical Engineering
Краткое описание
The gut microbiota produce hundreds of small molecules, many of which modulate host physiology. Although efforts have been made to identify biosynthetic genes for secondary metabolites, the chemical output of the gut microbiome consists predominantly of primary metabolites. Here we introduce the gutSMASH algorithm for identification of primary metabolic gene clusters, and we used it to systematically profile gut microbiome metabolism, identifying 19,890 gene clusters in 4,240 high-quality microbial genomes. We found marked differences in pathway distribution among phyla, reflecting distinct strategies for energy capture. These data explain taxonomic differences in short-chain fatty acid production and suggest a characteristic metabolic niche for each taxon. Analysis of 1,135 individuals from a Dutch population-based cohort shows that the level of microbiome-derived metabolites in plasma and feces is almost completely uncorrelated with the metagenomic abundance of corresponding metabolic genes, indicating a crucial role for pathway-specific gene regulation and metabolite flux. This work is a starting point for understanding differences in how bacterial taxa contribute to the chemistry of the microbiome. Taxon-specific primary metabolic pathways are identified using profile hidden Markov models.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Microbiome
5 публикаций, 5.75%
|
|
|
Nucleic Acids Research
4 публикации, 4.6%
|
|
|
Briefings in Bioinformatics
4 публикации, 4.6%
|
|
|
Gut Microbes
3 публикации, 3.45%
|
|
|
npj Biofilms and Microbiomes
3 публикации, 3.45%
|
|
|
Cell
2 публикации, 2.3%
|
|
|
bioRxiv
2 публикации, 2.3%
|
|
|
Cell Host and Microbe
2 публикации, 2.3%
|
|
|
mBio
2 публикации, 2.3%
|
|
|
ISME Journal
2 публикации, 2.3%
|
|
|
Nature Microbiology
2 публикации, 2.3%
|
|
|
Current Opinion in Chemical Biology
2 публикации, 2.3%
|
|
|
Microorganisms
2 публикации, 2.3%
|
|
|
Metabolites
1 публикация, 1.15%
|
|
|
Neural Regeneration Research
1 публикация, 1.15%
|
|
|
Frontiers in Bioengineering and Biotechnology
1 публикация, 1.15%
|
|
|
Scientific Reports
1 публикация, 1.15%
|
|
|
Analytical Chemistry
1 публикация, 1.15%
|
|
|
Proceedings of the National Academy of Sciences of the United States of America
1 публикация, 1.15%
|
|
|
Science Translational Medicine
1 публикация, 1.15%
|
|
|
Life
1 публикация, 1.15%
|
|
|
TrAC - Trends in Analytical Chemistry
1 публикация, 1.15%
|
|
|
Cell Genomics
1 публикация, 1.15%
|
|
|
Immunology and Cell Biology
1 публикация, 1.15%
|
|
|
Nature Metabolism
1 публикация, 1.15%
|
|
|
Biomedicine and Pharmacotherapy
1 публикация, 1.15%
|
|
|
Food Research International
1 публикация, 1.15%
|
|
|
Journal of Nutrition
1 публикация, 1.15%
|
|
|
Journal of Hazardous Materials
1 публикация, 1.15%
|
|
|
1
2
3
4
5
|
Издатели
|
5
10
15
20
25
|
|
|
Springer Nature
21 публикация, 24.14%
|
|
|
Cold Spring Harbor Laboratory
16 публикаций, 18.39%
|
|
|
Elsevier
15 публикаций, 17.24%
|
|
|
Oxford University Press
10 публикаций, 11.49%
|
|
|
MDPI
7 публикаций, 8.05%
|
|
|
American Society for Microbiology
6 публикаций, 6.9%
|
|
|
Taylor & Francis
3 публикации, 3.45%
|
|
|
American Association for the Advancement of Science (AAAS)
2 публикации, 2.3%
|
|
|
Wiley
2 публикации, 2.3%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
1 публикация, 1.15%
|
|
|
Frontiers Media S.A.
1 публикация, 1.15%
|
|
|
American Chemical Society (ACS)
1 публикация, 1.15%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 1.15%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 1.15%
|
|
|
5
10
15
20
25
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
89
Всего цитирований:
89
Цитирований c 2024:
71
(81.61%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Pascal Andreu V. et al. gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota // Nature Biotechnology. 2023. Vol. 41. No. 10.
ГОСТ со всеми авторами (до 50)
Скопировать
Pascal Andreu V., Augustijn H. E., Chen L., Zhernakova A., Fu J., Fischbach M. A., Dodd D., Medema M. H. gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota // Nature Biotechnology. 2023. Vol. 41. No. 10.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41587-023-01675-1
UR - https://doi.org/10.1038/s41587-023-01675-1
TI - gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota
T2 - Nature Biotechnology
AU - Pascal Andreu, Victòria
AU - Augustijn, Hannah E.
AU - Chen, Lianmin
AU - Zhernakova, Alexandra
AU - Fu, Jingyuan
AU - Fischbach, Michael A.
AU - Dodd, Dylan
AU - Medema, Marnix H.
PY - 2023
DA - 2023/02/13
PB - Springer Nature
IS - 10
VL - 41
PMID - 36782070
SN - 1087-0156
SN - 1546-1696
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Pascal Andreu,
author = {Victòria Pascal Andreu and Hannah E. Augustijn and Lianmin Chen and Alexandra Zhernakova and Jingyuan Fu and Michael A. Fischbach and Dylan Dodd and Marnix H. Medema},
title = {gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota},
journal = {Nature Biotechnology},
year = {2023},
volume = {41},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1038/s41587-023-01675-1},
number = {10},
doi = {10.1038/s41587-023-01675-1}
}