A community effort to optimize sequence-based deep learning models of gene regulation

Abdul Muntakim Rafi 1
Dmitry Penzar 3, 4, 5
Dohoon Lee 6
Danyeong Lee 6
Nayeon Kim 6
Sangyeup Kim 6
Dohyeon Kim 6
Yeojin Shin 6
Il-Youp Kwak 7
Georgy Meshcheryakov 5
Andrey Lando 8
Arsenii Zinkevich 2, 3
Byeong-Chan Kim 7
Juhyun Lee 7
Taein Kang 7
Eeshit Dhaval Vaishnav 9, 10
Payman Yadollahpour 9
Susanne Bornelöv 11
Fredrik SVENSSON 9, 12
Maria-Anna Trapotsi 13
Duc Tran 3, 5
Tin Nguyen 14
Xinming Tu 1
Тип публикацииJournal Article
Дата публикации2024-10-11
scimago Q1
wos Q1
БС1
SJR19.006
CiteScore58.8
Impact factor41.7
ISSN10870156, 15461696
Краткое описание

A systematic evaluation of how model architectures and training strategies impact genomics model performance is needed. To address this gap, we held a DREAM Challenge where competitors trained models on a dataset of millions of random promoter DNA sequences and corresponding expression levels, experimentally determined in yeast. For a robust evaluation of the models, we designed a comprehensive suite of benchmarks encompassing various sequence types. All top-performing models used neural networks but diverged in architectures and training strategies. To dissect how architectural and training choices impact performance, we developed the Prix Fixe framework to divide models into modular building blocks. We tested all possible combinations for the top three models, further improving their performance. The DREAM Challenge models not only achieved state-of-the-art results on our comprehensive yeast dataset but also consistently surpassed existing benchmarks on Drosophila and human genomic datasets, demonstrating the progress that can be driven by gold-standard genomics datasets.

Найдено 
Найдено 

Топ-30

Журналы

1
bioRxiv
1 публикация, 7.69%
Nature Reviews Genetics
1 публикация, 7.69%
Nucleic Acids Research
1 публикация, 7.69%
Nature
1 публикация, 7.69%
Theoretical And Applied Genetics
1 публикация, 7.69%
BMC Genomics
1 публикация, 7.69%
Trends in Ecology and Evolution
1 публикация, 7.69%
1

Издатели

1
2
3
4
5
6
7
Cold Spring Harbor Laboratory
7 публикаций, 53.85%
Springer Nature
4 публикации, 30.77%
Oxford University Press
1 публикация, 7.69%
Elsevier
1 публикация, 7.69%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
14
Поделиться
Цитировать
ГОСТ |
Цитировать
Rafi A. M. et al. A community effort to optimize sequence-based deep learning models of gene regulation // Nature Biotechnology. 2024.
ГОСТ со всеми авторами (до 50) Скопировать
Rafi A. M. et al. A community effort to optimize sequence-based deep learning models of gene regulation // Nature Biotechnology. 2024.
RIS |
Цитировать
RIS
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Rafi,
author = {Abdul Muntakim Rafi and Daria S Nogina and Dmitry Penzar and Dohoon Lee and Danyeong Lee and Nayeon Kim and Sangyeup Kim and Dohyeon Kim and Yeojin Shin and Il-Youp Kwak and Georgy Meshcheryakov and Andrey Lando and Arsenii Zinkevich and Byeong-Chan Kim and Juhyun Lee and Taein Kang and Eeshit Dhaval Vaishnav and Payman Yadollahpour and Susanne Bornelöv and Fredrik SVENSSON and Maria-Anna Trapotsi and Duc Tran and Tin Nguyen and Xinming Tu and others},
title = {A community effort to optimize sequence-based deep learning models of gene regulation},
journal = {Nature Biotechnology},
year = {2024},
publisher = {Springer Nature},
month = {oct},
url = {https://www.nature.com/articles/s41587-024-02414-w},
doi = {10.1038/s41587-024-02414-w}
}