Open Access
Open access
volume 17 issue 3 pages 261-272

SciPy 1.0: fundamental algorithms for scientific computing in Python

Pauli Virtanen 1
Ralf Gommers 2
Travis E. Oliphant 2, 3, 4, 5, 6
Matt Haberland 7, 8
Tyler Reddy 9
David Cournapeau 10
Evgeni Burovski 11
Pearu Peterson 12, 13
Warren Weckesser 14
Jonathan Bright 15
Stéfan van der Walt 14
Matthew Brett 16
JOSHUA WILSON 17
K Jarrod Millman 14, 18
Nikolay Mayorov 19
Andrew R. J. Nelson 20
Eric Jones 5
ROBERT KERN 5
Eric Larson 21
C.J. Carey 22
İlhan Polat 23
Yu Feng 24
Eric W Moore 25
Jake Vanderplas 26
Denis Laxalde 27
Josef Perktold 28
Robert Cimrman 29
Ian Henriksen 6, 30, 31
E. A. Quintero 32
Charles R Harris 33, 34
Anne M Archibald 35
AntOnio H. Ribeiro 36
Fabian Pedregosa 37
Paul Van Mulbregt 38
2
 
Quansight LLC, Austin, USA
5
 
Enthought, Inc., Austin, USA
6
 
Anaconda Inc., Austin, USA
7
 
BioResource and Agricultural Engineering Department, California Polytechnic State University, San Luis Obispo, USA
10
 
Independent researcher, Tokyo, Japan
12
 
Independent researcher, Saue, Estonia
13
 
Department of Mechanics and Applied Mathematics, Institute of Cybernetics at Tallinn Technical University, Tallinn, Estonia
15
 
Independent researcher, New York, USA
17
 
Independent researcher, San Francisco, USA
19
 
WayRay LLC, Skolkovo Innovation Center, Moscow, Russia
23
 
Independent researcher, Amsterdam, The Netherlands
25
 
Bruker Biospin Corp., Billerica, USA
27
 
Independent researcher, Toulouse, France
28
 
Independent researcher, Montreal, Canada
32
 
Independent researcher, Belmont, USA
33
 
Space Dynamics Laboratory, North Logan, USA
34
 
Independent researcher, Logan, USA
35
 
Anton Pannekoek Institute, Amsterdam, The Netherlands
37
 
Google LLC, Montreal, Canada
38
 
Google LLC, Cambridge, USA
Publication typeJournal Article
Publication date2020-02-03
scimago Q1
wos Q1
SJR17.251
CiteScore49.0
Impact factor32.1
ISSN15487091, 15487105
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Abstract
SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments. This Perspective describes the development and capabilities of SciPy 1.0, an open source scientific computing library for the Python programming language.
Found 
Found 

Top-30

Journals

500
1000
1500
2000
2500
Astrophysical Journal
2380 publications, 8%
Monthly Notices of the Royal Astronomical Society
1673 publications, 5.62%
Astronomy and Astrophysics
1156 publications, 3.89%
Astronomical Journal
715 publications, 2.4%
Physical Review D
545 publications, 1.83%
Astrophysical Journal Letters
452 publications, 1.52%
Nature Communications
392 publications, 1.32%
Scientific Reports
377 publications, 1.27%
bioRxiv
283 publications, 0.95%
Astrophysical Journal, Supplement Series
233 publications, 0.78%
eLife
182 publications, 0.61%
Journal of Chemical Physics
173 publications, 0.58%
PLoS ONE
168 publications, 0.56%
Journal of Cosmology and Astroparticle Physics
165 publications, 0.55%
Journal of Chemical Theory and Computation
153 publications, 0.51%
PLoS Computational Biology
145 publications, 0.49%
Lecture Notes in Computer Science
128 publications, 0.43%
Physical Review B
124 publications, 0.42%
The Journal of Open Source Software
123 publications, 0.41%
Sensors
121 publications, 0.41%
IEEE Access
117 publications, 0.39%
Journal of Chemical Information and Modeling
117 publications, 0.39%
Nature
109 publications, 0.37%
Physical Review Research
108 publications, 0.36%
The Planetary Science Journal
108 publications, 0.36%
iScience
105 publications, 0.35%
Physical Review A
101 publications, 0.34%
Physical Review E
92 publications, 0.31%
Proceedings of the National Academy of Sciences of the United States of America
90 publications, 0.3%
500
1000
1500
2000
2500

Publishers

500
1000
1500
2000
2500
3000
3500
4000
4500
Elsevier
4339 publications, 14.59%
American Astronomical Society
3653 publications, 12.28%
Springer Nature
3294 publications, 11.07%
Cold Spring Harbor Laboratory
2928 publications, 9.84%
Oxford University Press
2207 publications, 7.42%
Institute of Electrical and Electronics Engineers (IEEE)
1319 publications, 4.43%
MDPI
1301 publications, 4.37%
Wiley
1234 publications, 4.15%
American Physical Society (APS)
1221 publications, 4.1%
EDP Sciences
1183 publications, 3.98%
IOP Publishing
1026 publications, 3.45%
American Chemical Society (ACS)
927 publications, 3.12%
Frontiers Media S.A.
457 publications, 1.54%
AIP Publishing
397 publications, 1.33%
Public Library of Science (PLoS)
382 publications, 1.28%
Royal Society of Chemistry (RSC)
293 publications, 0.99%
Taylor & Francis
243 publications, 0.82%
American Geophysical Union
233 publications, 0.78%
Association for Computing Machinery (ACM)
227 publications, 0.76%
eLife Sciences Publications
182 publications, 0.61%
American Association for the Advancement of Science (AAAS)
144 publications, 0.48%
SAGE
128 publications, 0.43%
The Open Journal
123 publications, 0.41%
American Institute of Aeronautics and Astronautics (AIAA)
111 publications, 0.37%
Ovid Technologies (Wolters Kluwer Health)
92 publications, 0.31%
Proceedings of the National Academy of Sciences (PNAS)
90 publications, 0.3%
Optica Publishing Group
86 publications, 0.29%
Copernicus
82 publications, 0.28%
American Society for Microbiology
81 publications, 0.27%
500
1000
1500
2000
2500
3000
3500
4000
4500
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
30k
Share
Cite this
GOST |
Cite this
GOST Copy
Virtanen P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python // Nature Methods. 2020. Vol. 17. No. 3. pp. 261-272.
GOST all authors (up to 50) Copy
Virtanen P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python // Nature Methods. 2020. Vol. 17. No. 3. pp. 261-272.
RIS |
Cite this
RIS
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Virtanen,
author = {Pauli Virtanen and Ralf Gommers and Travis E. Oliphant and Matt Haberland and Tyler Reddy and David Cournapeau and Evgeni Burovski and Pearu Peterson and Warren Weckesser and Jonathan Bright and Stéfan van der Walt and Matthew Brett and JOSHUA WILSON and K Jarrod Millman and Nikolay Mayorov and Andrew R. J. Nelson and Eric Jones and ROBERT KERN and Eric Larson and C.J. Carey and İlhan Polat and Yu Feng and Eric W Moore and Jake Vanderplas and Denis Laxalde and Josef Perktold and Robert Cimrman and Ian Henriksen and E. A. Quintero and Charles R Harris and Anne M Archibald and AntOnio H. Ribeiro and Fabian Pedregosa and Paul Van Mulbregt and others},
title = {SciPy 1.0: fundamental algorithms for scientific computing in Python},
journal = {Nature Methods},
year = {2020},
volume = {17},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1038/s41592-019-0686-2},
number = {3},
pages = {261--272},
doi = {10.1038/s41592-019-0686-2}
}
MLA
Cite this
MLA Copy
Virtanen, Pauli, et al. “SciPy 1.0: fundamental algorithms for scientific computing in Python.” Nature Methods, vol. 17, no. 3, Feb. 2020, pp. 261-272. https://doi.org/10.1038/s41592-019-0686-2.