Open Access
Open access
volume 15 issue 1 publication number 3852

Evaluating GPT models for clinical note de-identification

Bayan Altalla’ 1, 2
Sameera Abdalla 2
Ahmad Altamimi 2
Layla Bitar 1
Amal Al Omari 1
Ramiz Kardan 3
Iyad Sultan 1
Publication typeJournal Article
Publication date2025-01-31
scimago Q1
wos Q1
SJR0.874
CiteScore6.7
Impact factor3.9
ISSN20452322
Abstract
The rapid digitalization of healthcare has created a pressing need for solutions that manage clinical data securely while ensuring patient privacy. This study evaluates the capabilities of GPT-3.5 and GPT-4 models in de-identifying clinical notes and generating synthetic data, using API access and zero-shot prompt engineering to optimize computational efficiency. Results show that GPT-4 significantly outperformed GPT-3.5, achieving a precision of 0.9925, a recall of 0.8318, an F1 score of 0.8973, and an accuracy of 0.9911. These results demonstrate GPT-4’s potential as a powerful tool for safeguarding patient privacy while increasing the availability of clinical data for research. This work sets a benchmark for balancing data utility and privacy in healthcare data management.
Found 
Found 

Top-30

Journals

1
Journal of Healthcare Informatics Research
1 publication, 11.11%
Humanities and Social Sciences Communications
1 publication, 11.11%
Computers in Biology and Medicine
1 publication, 11.11%
Journal of Clinical Medicine
1 publication, 11.11%
Journal of Medical Internet Research
1 publication, 11.11%
iScience
1 publication, 11.11%
1

Publishers

1
2
3
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 33.33%
Springer Nature
2 publications, 22.22%
Elsevier
2 publications, 22.22%
MDPI
1 publication, 11.11%
JMIR Publications
1 publication, 11.11%
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
9
Share
Cite this
GOST |
Cite this
GOST Copy
Altalla’ B. et al. Evaluating GPT models for clinical note de-identification // Scientific Reports. 2025. Vol. 15. No. 1. 3852
GOST all authors (up to 50) Copy
Altalla’ B., Abdalla S., Altamimi A., Bitar L., Al Omari A., Kardan R., Sultan I. Evaluating GPT models for clinical note de-identification // Scientific Reports. 2025. Vol. 15. No. 1. 3852
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41598-025-86890-3
UR - https://www.nature.com/articles/s41598-025-86890-3
TI - Evaluating GPT models for clinical note de-identification
T2 - Scientific Reports
AU - Altalla’, Bayan
AU - Abdalla, Sameera
AU - Altamimi, Ahmad
AU - Bitar, Layla
AU - Al Omari, Amal
AU - Kardan, Ramiz
AU - Sultan, Iyad
PY - 2025
DA - 2025/01/31
PB - Springer Nature
IS - 1
VL - 15
SN - 2045-2322
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Altalla’,
author = {Bayan Altalla’ and Sameera Abdalla and Ahmad Altamimi and Layla Bitar and Amal Al Omari and Ramiz Kardan and Iyad Sultan},
title = {Evaluating GPT models for clinical note de-identification},
journal = {Scientific Reports},
year = {2025},
volume = {15},
publisher = {Springer Nature},
month = {jan},
url = {https://www.nature.com/articles/s41598-025-86890-3},
number = {1},
pages = {3852},
doi = {10.1038/s41598-025-86890-3}
}