High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics
B. Zhang
1
,
Lie Wang
1
,
Zhen Cao
2
,
Sergey M. Kozlov
2
,
F Pelayo García De Arquer
3
,
Cao-Thang Dinh
3
,
Jun Li
4
,
Ziyun Wang
3
,
Xue Li Zheng
3
,
Longsheng Zhang
1
,
Yunzhou Wen
1
,
Oleksandr Voznyy
3
,
Riccardo Comin
3
,
Phil De Luna
3
,
Tom Regier
5
,
Wenli Bi
6
,
Esen E. Alp
7
,
Chih-Wen Pao
8
,
Lirong Zheng
9
,
Yongfeng Hu
5
,
Yujin Ji
10
,
Yongdan Li
10
,
Ye Zhang
11
,
Huisheng Peng
1
,
5
Canadian Light Source, Inc. (CLSI), Saskatoon, Canada
|
Publication type: Journal Article
Publication date: 2020-10-19
scimago Q1
wos Q1
SJR: 14.132
CiteScore: 57.7
Impact factor: 44.6
ISSN: 25201158
Catalysis
Biochemistry
Process Chemistry and Technology
Bioengineering
Abstract
Multimetal oxyhydroxides have recently been reported that outperform noble metal catalysts for oxygen evolution reaction (OER). In such 3d-metal-based catalysts, the oxidation cycle of 3d metals has been posited to act as the OER thermodynamic-limiting process; however, further tuning of its energetics is challenging due to similarities among the electronic structures of neighbouring 3d metal modulators. Here we report a strategy to reprogram the Fe, Co and Ni oxidation cycles by incorporating high-valence transition-metal modulators X (X = W, Mo, Nb, Ta, Re and MoW). We use in situ and ex situ soft and hard X-ray absorption spectroscopies to characterize the oxidation transition in modulated NiFeX and FeCoX oxyhydroxide catalysts, and conclude that the lower OER overpotential is facilitated by the readier oxidation transition of 3d metals enabled by high-valence modulators. We report an ~17-fold mass activity enhancement compared with that for the OER catalysts widely employed in industrial water-splitting electrolysers. Multimetal oxyhydroxides are among the most active catalysts for alkaline water oxidation, but tuning their properties remains a challenge. Now, the performance of NiFe- and FeCo-based catalysts is optimized with the incorporation of high-valence modulator metals, which shifts the active metals towards lower valence states and enables lower overpotentials.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
5
10
15
20
25
30
|
|
|
Small
29 publications, 4.48%
|
|
|
Journal of Colloid and Interface Science
29 publications, 4.48%
|
|
|
Nature Communications
25 publications, 3.86%
|
|
|
Chemical Engineering Journal
25 publications, 3.86%
|
|
|
Advanced Materials
25 publications, 3.86%
|
|
|
Angewandte Chemie
24 publications, 3.7%
|
|
|
Angewandte Chemie - International Edition
24 publications, 3.7%
|
|
|
International Journal of Hydrogen Energy
23 publications, 3.55%
|
|
|
Journal of Materials Chemistry A
23 publications, 3.55%
|
|
|
Advanced Functional Materials
22 publications, 3.4%
|
|
|
Applied Catalysis B: Environmental
21 publications, 3.24%
|
|
|
Journal of Alloys and Compounds
21 publications, 3.24%
|
|
|
ACS Catalysis
20 publications, 3.09%
|
|
|
Journal of Energy Chemistry
19 publications, 2.93%
|
|
|
ACS applied materials & interfaces
16 publications, 2.47%
|
|
|
Advanced Energy Materials
15 publications, 2.31%
|
|
|
Journal of the American Chemical Society
11 publications, 1.7%
|
|
|
ACS Applied Energy Materials
10 publications, 1.54%
|
|
|
Inorganic Chemistry
8 publications, 1.23%
|
|
|
Chemical Communications
8 publications, 1.23%
|
|
|
Nano Energy
8 publications, 1.23%
|
|
|
Nano Research
7 publications, 1.08%
|
|
|
Chinese Chemical Letters
7 publications, 1.08%
|
|
|
Energy and Environmental Science
7 publications, 1.08%
|
|
|
Electrochimica Acta
6 publications, 0.93%
|
|
|
Advanced Science
6 publications, 0.93%
|
|
|
ChemSusChem
6 publications, 0.93%
|
|
|
ACS Sustainable Chemistry and Engineering
6 publications, 0.93%
|
|
|
Nanoscale
6 publications, 0.93%
|
|
|
Nano Letters
5 publications, 0.77%
|
|
|
5
10
15
20
25
30
|
Publishers
|
50
100
150
200
250
|
|
|
Elsevier
225 publications, 34.72%
|
|
|
Wiley
171 publications, 26.39%
|
|
|
American Chemical Society (ACS)
96 publications, 14.81%
|
|
|
Royal Society of Chemistry (RSC)
71 publications, 10.96%
|
|
|
Springer Nature
52 publications, 8.02%
|
|
|
MDPI
11 publications, 1.7%
|
|
|
American Association for the Advancement of Science (AAAS)
6 publications, 0.93%
|
|
|
Higher Education Press
2 publications, 0.31%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
2 publications, 0.31%
|
|
|
OAE Publishing Inc.
2 publications, 0.31%
|
|
|
The Electrochemical Society
1 publication, 0.15%
|
|
|
Frontiers Media S.A.
1 publication, 0.15%
|
|
|
Social Science Electronic Publishing
1 publication, 0.15%
|
|
|
IOP Publishing
1 publication, 0.15%
|
|
|
Nonferrous Metals Society of China
1 publication, 0.15%
|
|
|
Research Square Platform LLC
1 publication, 0.15%
|
|
|
Oxford University Press
1 publication, 0.15%
|
|
|
Science in China Press
1 publication, 0.15%
|
|
|
Tsinghua University Press
1 publication, 0.15%
|
|
|
ASME International
1 publication, 0.15%
|
|
|
50
100
150
200
250
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
649
Total citations:
649
Citations from 2024:
307
(47.37%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Zhang B. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics // Nature Catalysis. 2020. Vol. 3. No. 12. pp. 985-992.
GOST all authors (up to 50)
Copy
Zhang B., Wang L., Cao Z., Kozlov S. M., García De Arquer F. P., Dinh C., Li J., Wang Z., Zheng X. L., Zhang L., Wen Y., Voznyy O., Comin R., De Luna P., Regier T., Bi W., Alp E. E., Pao C., Zheng L., Hu Y., Ji Y., Li Y., Zhang Y., Cavallo L. M., Peng H., Sargent E. H. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics // Nature Catalysis. 2020. Vol. 3. No. 12. pp. 985-992.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/s41929-020-00525-6
UR - https://doi.org/10.1038/s41929-020-00525-6
TI - High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics
T2 - Nature Catalysis
AU - Zhang, B.
AU - Wang, Lie
AU - Cao, Zhen
AU - Kozlov, Sergey M.
AU - García De Arquer, F Pelayo
AU - Dinh, Cao-Thang
AU - Li, Jun
AU - Wang, Ziyun
AU - Zheng, Xue Li
AU - Zhang, Longsheng
AU - Wen, Yunzhou
AU - Voznyy, Oleksandr
AU - Comin, Riccardo
AU - De Luna, Phil
AU - Regier, Tom
AU - Bi, Wenli
AU - Alp, Esen E.
AU - Pao, Chih-Wen
AU - Zheng, Lirong
AU - Hu, Yongfeng
AU - Ji, Yujin
AU - Li, Yongdan
AU - Zhang, Ye
AU - Cavallo, Luigi Maria
AU - Peng, Huisheng
AU - Sargent, Edward H.
PY - 2020
DA - 2020/10/19
PB - Springer Nature
SP - 985-992
IS - 12
VL - 3
SN - 2520-1158
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2020_Zhang,
author = {B. Zhang and Lie Wang and Zhen Cao and Sergey M. Kozlov and F Pelayo García De Arquer and Cao-Thang Dinh and Jun Li and Ziyun Wang and Xue Li Zheng and Longsheng Zhang and Yunzhou Wen and Oleksandr Voznyy and Riccardo Comin and Phil De Luna and Tom Regier and Wenli Bi and Esen E. Alp and Chih-Wen Pao and Lirong Zheng and Yongfeng Hu and Yujin Ji and Yongdan Li and Ye Zhang and Luigi Maria Cavallo and Huisheng Peng and Edward H. Sargent},
title = {High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics},
journal = {Nature Catalysis},
year = {2020},
volume = {3},
publisher = {Springer Nature},
month = {oct},
url = {https://doi.org/10.1038/s41929-020-00525-6},
number = {12},
pages = {985--992},
doi = {10.1038/s41929-020-00525-6}
}
Cite this
MLA
Copy
Zhang, B., et al. “High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics.” Nature Catalysis, vol. 3, no. 12, Oct. 2020, pp. 985-992. https://doi.org/10.1038/s41929-020-00525-6.