Nature, volume 405, issue 6787, pages 665-668

Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly

Publication typeJournal Article
Publication date2000-06-01
Journal: Nature
scimago Q1
SJR18.509
CiteScore90.0
Impact factor50.5
ISSN00280836, 14764687
PubMed ID:  10864319
Multidisciplinary
Abstract
In biological systems, organic molecules exert a remarkable level of control over the nucleation and mineral phase of inorganic materials such as calcium carbonate and silica, and over the assembly of crystallites and other nanoscale building blocks into complex structures required for biological function1,2,3,4. This ability to direct the assembly of nanoscale components into controlled and sophisticated structures has motivated intense efforts to develop assembly methods that mimic or exploit the recognition capabilities and interactions found in biological systems5,6,7,8,9,10. Of particular value would be methods that could be applied to materials with interesting electronic or optical properties, but natural evolution has not selected for interactions between biomolecules and such materials. However, peptides with limited selectivity for binding to metal surfaces and metal oxide surfaces have been successfully selected10,11. Here we extend this approach and show that combinatorial phage-display libraries can be used to evolve peptides that bind to a range of semiconductor surfaces with high specificity, depending on the crystallographic orientation and composition of the structurally similar materials we have used. As electronic devices contain structurally related materials in close proximity, such peptides may find use for the controlled placement and assembly of a variety of practically important materials, thus broadening the scope for ‘bottom-up’ fabrication approaches.
Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
45
50
5
10
15
20
25
30
35
40
45
50

Publishers

50
100
150
200
250
300
50
100
150
200
250
300
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?