Origin of voltage decay in high-capacity layered oxide electrodes
M. Sathiya
1, 2, 3
,
A. M. Abakumov
4
,
D Foix
3, 5, 6
,
G. ROUSSE
1, 6, 7
,
K. Ramesha
8
,
M Saubanère
3, 6, 9
,
M L Doublet
3, 6, 9
,
H VEZIN
10
,
C P Laisa
8
,
A.S. Prakash
1, 8
,
D. Gonbeau
3, 5, 6
,
G Vantendeloo
4
,
J.M. Tarascon
1, 3, 6
3
ALISTORE-European Research Institute, 80039 Amiens, France
|
5
IPREM/ECP (UMR 5254), University of Pau, 2 av. Pierre Angot 64053 Pau Cedex 9, France,
|
Publication type: Journal Article
Publication date: 2014-12-01
scimago Q1
wos Q1
SJR: 14.204
CiteScore: 61.8
Impact factor: 38.5
ISSN: 14761122, 14764660
DOI:
10.1038/nmat4137
PubMed ID:
25437258
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g(-1) exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
5
10
15
20
25
30
35
40
45
|
|
|
Advanced Energy Materials
44 publications, 5.23%
|
|
|
ACS applied materials & interfaces
41 publications, 4.87%
|
|
|
Chemistry of Materials
38 publications, 4.51%
|
|
|
Journal of Power Sources
32 publications, 3.8%
|
|
|
Journal of Materials Chemistry A
29 publications, 3.44%
|
|
|
Energy Storage Materials
26 publications, 3.09%
|
|
|
Nature Communications
25 publications, 2.97%
|
|
|
Journal of the Electrochemical Society
24 publications, 2.85%
|
|
|
Nano Energy
24 publications, 2.85%
|
|
|
Advanced Materials
23 publications, 2.73%
|
|
|
Energy and Environmental Science
22 publications, 2.61%
|
|
|
Advanced Functional Materials
21 publications, 2.49%
|
|
|
Electrochimica Acta
20 publications, 2.38%
|
|
|
Journal of Alloys and Compounds
20 publications, 2.38%
|
|
|
Journal of Physical Chemistry C
17 publications, 2.02%
|
|
|
ACS Applied Energy Materials
17 publications, 2.02%
|
|
|
Small
14 publications, 1.66%
|
|
|
Journal of the American Chemical Society
13 publications, 1.54%
|
|
|
ACS Energy Letters
13 publications, 1.54%
|
|
|
Ionics
13 publications, 1.54%
|
|
|
Angewandte Chemie
12 publications, 1.43%
|
|
|
Angewandte Chemie - International Edition
12 publications, 1.43%
|
|
|
Nature Energy
10 publications, 1.19%
|
|
|
Journal of Physical Chemistry Letters
9 publications, 1.07%
|
|
|
ACS Nano
8 publications, 0.95%
|
|
|
Nature Materials
8 publications, 0.95%
|
|
|
Chemical Engineering Journal
8 publications, 0.95%
|
|
|
Solid State Ionics
8 publications, 0.95%
|
|
|
ChemElectroChem
8 publications, 0.95%
|
|
|
5
10
15
20
25
30
35
40
45
|
Publishers
|
50
100
150
200
250
|
|
|
Elsevier
213 publications, 25.3%
|
|
|
Wiley
185 publications, 21.97%
|
|
|
American Chemical Society (ACS)
182 publications, 21.62%
|
|
|
Springer Nature
99 publications, 11.76%
|
|
|
Royal Society of Chemistry (RSC)
86 publications, 10.21%
|
|
|
The Electrochemical Society
24 publications, 2.85%
|
|
|
MDPI
10 publications, 1.19%
|
|
|
IOP Publishing
9 publications, 1.07%
|
|
|
Oxford University Press
6 publications, 0.71%
|
|
|
American Physical Society (APS)
4 publications, 0.48%
|
|
|
American Association for the Advancement of Science (AAAS)
3 publications, 0.36%
|
|
|
Pleiades Publishing
2 publications, 0.24%
|
|
|
AIP Publishing
2 publications, 0.24%
|
|
|
The Electrochemical Society of Japan
2 publications, 0.24%
|
|
|
Frontiers Media S.A.
2 publications, 0.24%
|
|
|
Nonferrous Metals Society of China
2 publications, 0.24%
|
|
|
International Union of Crystallography (IUCr)
1 publication, 0.12%
|
|
|
ASME International
1 publication, 0.12%
|
|
|
World Scientific
1 publication, 0.12%
|
|
|
Chinese Ceramic Society
1 publication, 0.12%
|
|
|
Social Science Electronic Publishing
1 publication, 0.12%
|
|
|
Association for Computing Machinery (ACM)
1 publication, 0.12%
|
|
|
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
1 publication, 0.12%
|
|
|
Research Square Platform LLC
1 publication, 0.12%
|
|
|
Science in China Press
1 publication, 0.12%
|
|
|
50
100
150
200
250
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
842
Total citations:
842
Citations from 2024:
122
(14%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Sathiya M. et al. Origin of voltage decay in high-capacity layered oxide electrodes // Nature Materials. 2014. Vol. 14. No. 2. pp. 230-238.
GOST all authors (up to 50)
Copy
Sathiya M., Abakumov A. M., Foix D., ROUSSE G., Ramesha K., Saubanère M., Doublet M. L., VEZIN H., Laisa C. P., Prakash A., Gonbeau D., Vantendeloo G., Tarascon J. Origin of voltage decay in high-capacity layered oxide electrodes // Nature Materials. 2014. Vol. 14. No. 2. pp. 230-238.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/nmat4137
UR - https://doi.org/10.1038/nmat4137
TI - Origin of voltage decay in high-capacity layered oxide electrodes
T2 - Nature Materials
AU - Sathiya, M.
AU - Abakumov, A. M.
AU - Foix, D
AU - ROUSSE, G.
AU - Ramesha, K.
AU - Saubanère, M
AU - Doublet, M L
AU - VEZIN, H
AU - Laisa, C P
AU - Prakash, A.S.
AU - Gonbeau, D.
AU - Vantendeloo, G
AU - Tarascon, J.M.
PY - 2014
DA - 2014/12/01
PB - Springer Nature
SP - 230-238
IS - 2
VL - 14
PMID - 25437258
SN - 1476-1122
SN - 1476-4660
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2014_Sathiya,
author = {M. Sathiya and A. M. Abakumov and D Foix and G. ROUSSE and K. Ramesha and M Saubanère and M L Doublet and H VEZIN and C P Laisa and A.S. Prakash and D. Gonbeau and G Vantendeloo and J.M. Tarascon},
title = {Origin of voltage decay in high-capacity layered oxide electrodes},
journal = {Nature Materials},
year = {2014},
volume = {14},
publisher = {Springer Nature},
month = {dec},
url = {https://doi.org/10.1038/nmat4137},
number = {2},
pages = {230--238},
doi = {10.1038/nmat4137}
}
Cite this
MLA
Copy
Sathiya, M., et al. “Origin of voltage decay in high-capacity layered oxide electrodes.” Nature Materials, vol. 14, no. 2, Dec. 2014, pp. 230-238. https://doi.org/10.1038/nmat4137.
Profiles