Nature Physics, volume 5, issue 11, pages 811-814

Assessment of carrier-multiplication efficiency in bulk PbSe and PbS

Publication typeJournal Article
Publication date2009-09-06
Journal: Nature Physics
scimago Q1
SJR8.228
CiteScore30.4
Impact factor17.6
ISSN17452473, 17452481
General Physics and Astronomy
Abstract
More efficient solar-energy conversion is possible if a single high-energy photon can be made to generate two electron–hole pairs in a cell, rather than a single pair plus heat. It is now shown that, contrary to expectation, this carrier multiplication is better in bulk semiconductor materials than in quantum dots. One of the important factors limiting solar-cell efficiency is that incident photons generate one electron–hole pair, irrespective of the photon energy. Any excess photon energy is lost as heat. The possible generation of multiple charge carriers per photon (carrier multiplication) is therefore of great interest for future solar cells1. Carrier multiplication is known to occur in bulk semiconductors, but has been thought to be enhanced significantly in nanocrystalline materials such as quantum dots, owing to their discrete energy levels and enhanced Coulomb interactions1,2,3. Contrary to this expectation, we demonstrate here that, for a given photon energy, carrier multiplication occurs more efficiently in bulk PbS and PbSe than in quantum dots of the same materials. Measured carrier-multiplication efficiencies in bulk materials are reproduced quantitatively using tight-binding calculations, which indicate that the reduced carrier-multiplication efficiency in quantum dots can be ascribed to the reduced density of states in these structures.

Top-30

Journals

5
10
15
20
25
5
10
15
20
25

Publishers

10
20
30
40
50
60
70
80
90
10
20
30
40
50
60
70
80
90
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?