Open Access
Open access
Nature Communications, volume 10, issue 1, publication number 2598

Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries

Publication typeJournal Article
Publication date2019-06-13
scimago Q1
SJR4.887
CiteScore24.9
Impact factor14.7
ISSN20411723
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Abstract
Co-intercalation reactions make graphite as promising anodes for sodium ion batteries, however, the high redox potentials significantly lower the energy density. Herein, we investigate the factors that influence the co-intercalation potential of graphite and find that the tuning of the voltage as large as 0.38 V is achievable by adjusting the relative stability of ternary graphite intercalation compounds and the solvent activity in electrolytes. The feasibility of graphite anode in sodium ion batteries is confirmed in conjunction with Na1.5VPO4.8F0.7 cathodes by using the optimal electrolyte. The sodium ion battery delivers an improved voltage of 3.1 V, a high power density of 3863 W kg−1both electrodes, negligible temperature dependency of energy/power densities and an extremely low capacity fading rate of 0.007% per cycle over 1000 cycles, which are among the best thus far reported for sodium ion full cells, making it a competitive choice in large-scale energy storage systems. Graphite is a promising anode material for sodium-ion batteries but suffers from the high co-intercalation potential. Here, the authors examine the factors influencing this potential and tailor the stability of graphite intercalation compound, realizing high energy and power densities.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

10
20
30
40
50
60
70
80
90
100
10
20
30
40
50
60
70
80
90
100
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?