Open Access
Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework
Julia Oktawiec
1
,
Henry Z H Jiang
1
,
Jenny G. Vitillo
2
,
Douglas A Reed
1
,
Lucy E Darago
1
,
Benjamin A. Trump
3
,
Varinia Bernales
2
,
Harriet Li
4
,
Kristen A Colwell
5
,
Hiroyasu Furukawa
1, 6
,
Craig Brown
3, 7
,
Laura Gagliardi
2
,
Jeffrey R. Long
1, 5, 6
4
Тип публикации: Journal Article
Дата публикации: 2020-06-18
scimago Q1
wos Q1
БС1
SJR: 4.761
CiteScore: 23.4
Impact factor: 15.7
ISSN: 20411723
PubMed ID:
32555184
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Краткое описание
The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal–organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal–organic frameworks for adsorption-based applications. Oxygen capture is attractive for catalysis, sensing, and separations, but engineering stable and selective adsorbents is challenging. Here the authors combine metal-based electron transfer with secondary coordination sphere effects in a metal-organic framework, leading to strong and reversible O2 adsorption that also exhibits negative cooperativity.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
7
8
9
|
|
|
Journal of the American Chemical Society
9 публикаций, 15%
|
|
|
Coordination Chemistry Reviews
3 публикации, 5%
|
|
|
Journal of Physical Chemistry C
2 публикации, 3.33%
|
|
|
Journal of Colloid and Interface Science
2 публикации, 3.33%
|
|
|
Advanced Materials
2 публикации, 3.33%
|
|
|
Inorganic Chemistry
2 публикации, 3.33%
|
|
|
Chemical Science
2 публикации, 3.33%
|
|
|
Angewandte Chemie - International Edition
2 публикации, 3.33%
|
|
|
Angewandte Chemie
2 публикации, 3.33%
|
|
|
APL Materials
1 публикация, 1.67%
|
|
|
Bulletin of the Chemical Society of Japan
1 публикация, 1.67%
|
|
|
ACS Central Science
1 публикация, 1.67%
|
|
|
Communications Chemistry
1 публикация, 1.67%
|
|
|
Microporous and Mesoporous Materials
1 публикация, 1.67%
|
|
|
Journal of Catalysis
1 публикация, 1.67%
|
|
|
Chinese Chemical Letters
1 публикация, 1.67%
|
|
|
Cell Reports Physical Science
1 публикация, 1.67%
|
|
|
Biomaterials Advances
1 публикация, 1.67%
|
|
|
Microchemical Journal
1 публикация, 1.67%
|
|
|
Chemistry of Materials
1 публикация, 1.67%
|
|
|
Chemical Reviews
1 публикация, 1.67%
|
|
|
Dalton Transactions
1 публикация, 1.67%
|
|
|
Energy and Environmental Science
1 публикация, 1.67%
|
|
|
Materials Chemistry Frontiers
1 публикация, 1.67%
|
|
|
Physical Chemistry Chemical Physics
1 публикация, 1.67%
|
|
|
ACS Catalysis
1 публикация, 1.67%
|
|
|
Molecular Systems Design and Engineering
1 публикация, 1.67%
|
|
|
ChemNanoMat
1 публикация, 1.67%
|
|
|
Biomacromolecules
1 публикация, 1.67%
|
|
|
Mendeleev Communications
1 публикация, 1.67%
|
|
|
1
2
3
4
5
6
7
8
9
|
Издатели
|
5
10
15
20
|
|
|
American Chemical Society (ACS)
20 публикаций, 33.33%
|
|
|
Elsevier
15 публикаций, 25%
|
|
|
Wiley
8 публикаций, 13.33%
|
|
|
Royal Society of Chemistry (RSC)
8 публикаций, 13.33%
|
|
|
AIP Publishing
3 публикации, 5%
|
|
|
Oxford University Press
2 публикации, 3.33%
|
|
|
Springer Nature
2 публикации, 3.33%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.67%
|
|
|
American Association for the Advancement of Science (AAAS)
1 публикация, 1.67%
|
|
|
5
10
15
20
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
60
Всего цитирований:
60
Цитирований c 2025:
12
(20%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Oktawiec J. et al. Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework // Nature Communications. 2020. Vol. 11. No. 1. 3087
ГОСТ со всеми авторами (до 50)
Скопировать
Oktawiec J., Jiang H. Z. H., Vitillo J. G., Reed D. A., Darago L. E., Trump B. A., Bernales V., Li H., Colwell K. A., Furukawa H., Brown C., Gagliardi L., Long J. R. Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework // Nature Communications. 2020. Vol. 11. No. 1. 3087
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41467-020-16897-z
UR - https://doi.org/10.1038/s41467-020-16897-z
TI - Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework
T2 - Nature Communications
AU - Oktawiec, Julia
AU - Jiang, Henry Z H
AU - Vitillo, Jenny G.
AU - Reed, Douglas A
AU - Darago, Lucy E
AU - Trump, Benjamin A.
AU - Bernales, Varinia
AU - Li, Harriet
AU - Colwell, Kristen A
AU - Furukawa, Hiroyasu
AU - Brown, Craig
AU - Gagliardi, Laura
AU - Long, Jeffrey R.
PY - 2020
DA - 2020/06/18
PB - Springer Nature
IS - 1
VL - 11
PMID - 32555184
SN - 2041-1723
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2020_Oktawiec,
author = {Julia Oktawiec and Henry Z H Jiang and Jenny G. Vitillo and Douglas A Reed and Lucy E Darago and Benjamin A. Trump and Varinia Bernales and Harriet Li and Kristen A Colwell and Hiroyasu Furukawa and Craig Brown and Laura Gagliardi and Jeffrey R. Long},
title = {Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework},
journal = {Nature Communications},
year = {2020},
volume = {11},
publisher = {Springer Nature},
month = {jun},
url = {https://doi.org/10.1038/s41467-020-16897-z},
number = {1},
pages = {3087},
doi = {10.1038/s41467-020-16897-z}
}