Open Access
Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework
Julia Oktawiec
1
,
Henry Z H Jiang
1
,
Jenny G. Vitillo
2
,
Douglas A Reed
1
,
Lucy E Darago
1
,
Benjamin A. Trump
3
,
Varinia Bernales
2
,
Harriet Li
4
,
Kristen A Colwell
5
,
Hiroyasu Furukawa
1, 6
,
Craig Brown
3, 7
,
Laura Gagliardi
2
,
Jeffrey R. Long
1, 5, 6
4
Publication type: Journal Article
Publication date: 2020-06-18
scimago Q1
wos Q1
SJR: 4.761
CiteScore: 23.4
Impact factor: 15.7
ISSN: 20411723
PubMed ID:
32555184
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Abstract
The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal–organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d′)bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal–organic frameworks for adsorption-based applications. Oxygen capture is attractive for catalysis, sensing, and separations, but engineering stable and selective adsorbents is challenging. Here the authors combine metal-based electron transfer with secondary coordination sphere effects in a metal-organic framework, leading to strong and reversible O2 adsorption that also exhibits negative cooperativity.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
2
3
4
5
6
7
8
9
|
|
|
Journal of the American Chemical Society
9 publications, 15%
|
|
|
Coordination Chemistry Reviews
3 publications, 5%
|
|
|
Journal of Physical Chemistry C
2 publications, 3.33%
|
|
|
Journal of Colloid and Interface Science
2 publications, 3.33%
|
|
|
Advanced Materials
2 publications, 3.33%
|
|
|
Inorganic Chemistry
2 publications, 3.33%
|
|
|
Chemical Science
2 publications, 3.33%
|
|
|
Angewandte Chemie - International Edition
2 publications, 3.33%
|
|
|
Angewandte Chemie
2 publications, 3.33%
|
|
|
APL Materials
1 publication, 1.67%
|
|
|
Bulletin of the Chemical Society of Japan
1 publication, 1.67%
|
|
|
ACS Central Science
1 publication, 1.67%
|
|
|
Communications Chemistry
1 publication, 1.67%
|
|
|
Microporous and Mesoporous Materials
1 publication, 1.67%
|
|
|
Journal of Catalysis
1 publication, 1.67%
|
|
|
Chinese Chemical Letters
1 publication, 1.67%
|
|
|
Cell Reports Physical Science
1 publication, 1.67%
|
|
|
Biomaterials Advances
1 publication, 1.67%
|
|
|
Microchemical Journal
1 publication, 1.67%
|
|
|
Chemistry of Materials
1 publication, 1.67%
|
|
|
Chemical Reviews
1 publication, 1.67%
|
|
|
Dalton Transactions
1 publication, 1.67%
|
|
|
Energy and Environmental Science
1 publication, 1.67%
|
|
|
Materials Chemistry Frontiers
1 publication, 1.67%
|
|
|
Physical Chemistry Chemical Physics
1 publication, 1.67%
|
|
|
ACS Catalysis
1 publication, 1.67%
|
|
|
Molecular Systems Design and Engineering
1 publication, 1.67%
|
|
|
ChemNanoMat
1 publication, 1.67%
|
|
|
Biomacromolecules
1 publication, 1.67%
|
|
|
Mendeleev Communications
1 publication, 1.67%
|
|
|
1
2
3
4
5
6
7
8
9
|
Publishers
|
5
10
15
20
|
|
|
American Chemical Society (ACS)
20 publications, 33.33%
|
|
|
Elsevier
15 publications, 25%
|
|
|
Wiley
8 publications, 13.33%
|
|
|
Royal Society of Chemistry (RSC)
8 publications, 13.33%
|
|
|
AIP Publishing
3 publications, 5%
|
|
|
Oxford University Press
2 publications, 3.33%
|
|
|
Springer Nature
2 publications, 3.33%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 publication, 1.67%
|
|
|
American Association for the Advancement of Science (AAAS)
1 publication, 1.67%
|
|
|
5
10
15
20
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
60
Total citations:
60
Citations from 2025:
12
(20%)
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Oktawiec J. et al. Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework // Nature Communications. 2020. Vol. 11. No. 1. 3087
GOST all authors (up to 50)
Copy
Oktawiec J., Jiang H. Z. H., Vitillo J. G., Reed D. A., Darago L. E., Trump B. A., Bernales V., Li H., Colwell K. A., Furukawa H., Brown C., Gagliardi L., Long J. R. Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework // Nature Communications. 2020. Vol. 11. No. 1. 3087
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/s41467-020-16897-z
UR - https://doi.org/10.1038/s41467-020-16897-z
TI - Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework
T2 - Nature Communications
AU - Oktawiec, Julia
AU - Jiang, Henry Z H
AU - Vitillo, Jenny G.
AU - Reed, Douglas A
AU - Darago, Lucy E
AU - Trump, Benjamin A.
AU - Bernales, Varinia
AU - Li, Harriet
AU - Colwell, Kristen A
AU - Furukawa, Hiroyasu
AU - Brown, Craig
AU - Gagliardi, Laura
AU - Long, Jeffrey R.
PY - 2020
DA - 2020/06/18
PB - Springer Nature
IS - 1
VL - 11
PMID - 32555184
SN - 2041-1723
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2020_Oktawiec,
author = {Julia Oktawiec and Henry Z H Jiang and Jenny G. Vitillo and Douglas A Reed and Lucy E Darago and Benjamin A. Trump and Varinia Bernales and Harriet Li and Kristen A Colwell and Hiroyasu Furukawa and Craig Brown and Laura Gagliardi and Jeffrey R. Long},
title = {Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework},
journal = {Nature Communications},
year = {2020},
volume = {11},
publisher = {Springer Nature},
month = {jun},
url = {https://doi.org/10.1038/s41467-020-16897-z},
number = {1},
pages = {3087},
doi = {10.1038/s41467-020-16897-z}
}