Open Access
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
2
Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
|
Тип публикации: Journal Article
Дата публикации: 2021-05-13
scimago Q1
wos Q1
БС1
SJR: 4.761
CiteScore: 23.4
Impact factor: 15.7
ISSN: 20411723
PubMed ID:
33986288
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Краткое описание
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Biophysical Journal
3 публикации, 5.08%
|
|
|
Nucleic Acids Research
3 публикации, 5.08%
|
|
|
Molecules
3 публикации, 5.08%
|
|
|
Proteins: Structure, Function and Genetics
3 публикации, 5.08%
|
|
|
Nature Communications
3 публикации, 5.08%
|
|
|
Journal of Chemical Information and Modeling
2 публикации, 3.39%
|
|
|
Journal of Chemical Theory and Computation
2 публикации, 3.39%
|
|
|
eLife
2 публикации, 3.39%
|
|
|
Frontiers in Bioinformatics
1 публикация, 1.69%
|
|
|
Computational and Structural Biotechnology Journal
1 публикация, 1.69%
|
|
|
Journal of Physics: Conference Series
1 публикация, 1.69%
|
|
|
Communications in Theoretical Physics
1 публикация, 1.69%
|
|
|
PLoS Computational Biology
1 публикация, 1.69%
|
|
|
Interdisciplinary sciences, computational life sciences
1 публикация, 1.69%
|
|
|
Journal of Physical Chemistry Letters
1 публикация, 1.69%
|
|
|
Journal of Physical Chemistry B
1 публикация, 1.69%
|
|
|
NAR Genomics and Bioinformatics
1 публикация, 1.69%
|
|
|
Trends in Genetics
1 публикация, 1.69%
|
|
|
Russian Chemical Reviews
1 публикация, 1.69%
|
|
|
Structure
1 публикация, 1.69%
|
|
|
Nature Methods
1 публикация, 1.69%
|
|
|
Briefings in Bioinformatics
1 публикация, 1.69%
|
|
|
MedComm
1 публикация, 1.69%
|
|
|
Chinese Physics B
1 публикация, 1.69%
|
|
|
Proceedings of the National Academy of Sciences of the United States of America
1 публикация, 1.69%
|
|
|
Scientia Sinica Chimica
1 публикация, 1.69%
|
|
|
Scientific Reports
1 публикация, 1.69%
|
|
|
Bioinformatics
1 публикация, 1.69%
|
|
|
1
2
3
|
Издатели
|
2
4
6
8
10
12
14
16
18
|
|
|
Cold Spring Harbor Laboratory
17 публикаций, 28.81%
|
|
|
Elsevier
6 публикаций, 10.17%
|
|
|
Springer Nature
6 публикаций, 10.17%
|
|
|
American Chemical Society (ACS)
6 публикаций, 10.17%
|
|
|
Oxford University Press
6 публикаций, 10.17%
|
|
|
Wiley
4 публикации, 6.78%
|
|
|
IOP Publishing
3 публикации, 5.08%
|
|
|
MDPI
3 публикации, 5.08%
|
|
|
eLife Sciences Publications
2 публикации, 3.39%
|
|
|
Frontiers Media S.A.
1 публикация, 1.69%
|
|
|
Public Library of Science (PLoS)
1 публикация, 1.69%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 1.69%
|
|
|
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 1.69%
|
|
|
Science in China Press
1 публикация, 1.69%
|
|
|
2
4
6
8
10
12
14
16
18
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
59
Всего цитирований:
59
Цитирований c 2024:
33
(55%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Peng X. et al. Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement // Nature Communications. 2021. Vol. 12. No. 1. 2777
ГОСТ со всеми авторами (до 50)
Скопировать
Peng X., Wu R., Zhan J., Zhou Y. Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement // Nature Communications. 2021. Vol. 12. No. 1. 2777
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41467-021-23100-4
UR - https://doi.org/10.1038/s41467-021-23100-4
TI - Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
T2 - Nature Communications
AU - Peng, Xiong
AU - Wu, Ruibo
AU - Zhan, Jian
AU - Zhou, Yaoqi
PY - 2021
DA - 2021/05/13
PB - Springer Nature
IS - 1
VL - 12
PMID - 33986288
SN - 2041-1723
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Peng,
author = {Xiong Peng and Ruibo Wu and Jian Zhan and Yaoqi Zhou},
title = {Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement},
journal = {Nature Communications},
year = {2021},
volume = {12},
publisher = {Springer Nature},
month = {may},
url = {https://doi.org/10.1038/s41467-021-23100-4},
number = {1},
pages = {2777},
doi = {10.1038/s41467-021-23100-4}
}