том 18 издание 4 страницы 309-323

Memristive crossbar arrays for brain-inspired computing

Тип публикацииJournal Article
Дата публикации2019-03-20
scimago Q1
wos Q1
БС1
SJR14.204
CiteScore61.8
Impact factor38.5
ISSN14761122, 14764660
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Краткое описание
With their working mechanisms based on ion migration, the switching dynamics and electrical behaviour of memristive devices resemble those of synapses and neurons, making these devices promising candidates for brain-inspired computing. Built into large-scale crossbar arrays to form neural networks, they perform efficient in-memory computing with massive parallelism by directly using physical laws. The dynamical interactions between artificial synapses and neurons equip the networks with both supervised and unsupervised learning capabilities. Moreover, their ability to interface with analogue signals from sensors without analogue/digital conversions reduces the processing time and energy overhead. Although numerous simulations have indicated the potential of these networks for brain-inspired computing, experimental implementation of large-scale memristive arrays is still in its infancy. This Review looks at the progress, challenges and possible solutions for efficient brain-inspired computation with memristive implementations, both as accelerators for deep learning and as building blocks for spiking neural networks. Memristive devices show great potential as artificial synapses and neurons, yet brain-inspired computing can be realized only by integrating a large number of these devices into reliable arrays. This Review discusses the challenges in the integration and use in computation of large-scale memristive neural networks.
Найдено 
Найдено 

Топ-30

Журналы

10
20
30
40
50
60
70
80
Advanced Materials
71 публикация, 4.7%
Advanced Electronic Materials
58 публикаций, 3.84%
Nature Communications
52 публикации, 3.44%
Advanced Functional Materials
51 публикация, 3.38%
Advanced Intelligent Systems
51 публикация, 3.38%
ACS applied materials & interfaces
47 публикаций, 3.11%
Applied Physics Letters
28 публикаций, 1.85%
ACS Applied Electronic Materials
27 публикаций, 1.79%
ACS Nano
27 публикаций, 1.79%
IEEE Transactions on Electron Devices
24 публикации, 1.59%
Small
24 публикации, 1.59%
Advanced Science
20 публикаций, 1.32%
Nano Letters
18 публикаций, 1.19%
Nature Electronics
18 публикаций, 1.19%
Neuromorphic Computing and Engineering
18 публикаций, 1.19%
Materials Horizons
17 публикаций, 1.13%
Journal of Alloys and Compounds
17 публикаций, 1.13%
Applied Surface Science
16 публикаций, 1.06%
Science advances
16 публикаций, 1.06%
IEEE Transactions on Circuits and Systems I: Regular Papers
14 публикаций, 0.93%
IEEE Electron Device Letters
14 публикаций, 0.93%
IEEE Access
13 публикаций, 0.86%
Nanomaterials
13 публикаций, 0.86%
Nanotechnology
13 публикаций, 0.86%
Frontiers in Nanotechnology
12 публикаций, 0.79%
Frontiers in Neuroscience
12 публикаций, 0.79%
Nano Energy
12 публикаций, 0.79%
Advanced Materials Technologies
12 публикаций, 0.79%
Journal of Materials Chemistry C
12 публикаций, 0.79%
10
20
30
40
50
60
70
80

Издатели

50
100
150
200
250
300
350
Wiley
348 публикаций, 23.03%
Institute of Electrical and Electronics Engineers (IEEE)
213 публикаций, 14.1%
Springer Nature
182 публикации, 12.05%
Elsevier
172 публикации, 11.38%
American Chemical Society (ACS)
156 публикаций, 10.32%
IOP Publishing
78 публикаций, 5.16%
AIP Publishing
64 публикации, 4.24%
Royal Society of Chemistry (RSC)
62 публикации, 4.1%
MDPI
53 публикации, 3.51%
Frontiers Media S.A.
34 публикации, 2.25%
American Association for the Advancement of Science (AAAS)
24 публикации, 1.59%
Pleiades Publishing
19 публикаций, 1.26%
American Physical Society (APS)
11 публикаций, 0.73%
Japan Society of Applied Physics
11 публикаций, 0.73%
Association for Computing Machinery (ACM)
9 публикаций, 0.6%
Science in China Press
6 публикаций, 0.4%
Taylor & Francis
5 публикаций, 0.33%
Cambridge University Press
4 публикации, 0.26%
Walter de Gruyter
3 публикации, 0.2%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
3 публикации, 0.2%
Research Square Platform LLC
3 публикации, 0.2%
Beilstein-Institut
2 публикации, 0.13%
American Vacuum Society
2 публикации, 0.13%
The Electrochemical Society
2 публикации, 0.13%
SAGE
2 публикации, 0.13%
Cold Spring Harbor Laboratory
2 публикации, 0.13%
Optica Publishing Group
2 публикации, 0.13%
IntechOpen
2 публикации, 0.13%
Bentham Science Publishers Ltd.
2 публикации, 0.13%
50
100
150
200
250
300
350
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1.5k
Поделиться
Цитировать
ГОСТ |
Цитировать
Xia Q., Yang J. J. Memristive crossbar arrays for brain-inspired computing // Nature Materials. 2019. Vol. 18. No. 4. pp. 309-323.
ГОСТ со всеми авторами (до 50) Скопировать
Xia Q., Yang J. J. Memristive crossbar arrays for brain-inspired computing // Nature Materials. 2019. Vol. 18. No. 4. pp. 309-323.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41563-019-0291-x
UR - https://doi.org/10.1038/s41563-019-0291-x
TI - Memristive crossbar arrays for brain-inspired computing
T2 - Nature Materials
AU - Xia, Qiangfei
AU - Yang, J. Joshua
PY - 2019
DA - 2019/03/20
PB - Springer Nature
SP - 309-323
IS - 4
VL - 18
PMID - 30894760
SN - 1476-1122
SN - 1476-4660
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Xia,
author = {Qiangfei Xia and J. Joshua Yang},
title = {Memristive crossbar arrays for brain-inspired computing},
journal = {Nature Materials},
year = {2019},
volume = {18},
publisher = {Springer Nature},
month = {mar},
url = {https://doi.org/10.1038/s41563-019-0291-x},
number = {4},
pages = {309--323},
doi = {10.1038/s41563-019-0291-x}
}
MLA
Цитировать
Xia, Qiangfei, and J. Joshua Yang. “Memristive crossbar arrays for brain-inspired computing.” Nature Materials, vol. 18, no. 4, Mar. 2019, pp. 309-323. https://doi.org/10.1038/s41563-019-0291-x.