Nature Materials, volume 20, issue 9, pages 1255-1263

Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways

Publication typeJournal Article
Publication date2021-05-03
Journal: Nature Materials
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor41.2
ISSN14761122, 14764660
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with the use of high-energy-density electrodes. We describe molecular ionic composite electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS cm−1 at 25 °C) and electrochemical stability (5.6 V versus Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω cm2) and overpotentials (≤120 mV at 1 mA cm−2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer–ion assembly to incorporate an inter-grain network filled with defective LiFSI and LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes. Developing safe electrolytes compatible with high-energy-density electrodes is key for the next generation of lithium-based batteries. Stable solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways are now proposed.

Top-30

Citations by journals

2
4
6
8
10
12
Chemical Engineering Journal
12 publications, 8.96%
Advanced Materials
11 publications, 8.21%
Advanced Functional Materials
6 publications, 4.48%
Advanced Energy Materials
5 publications, 3.73%
Angewandte Chemie
5 publications, 3.73%
Angewandte Chemie - International Edition
5 publications, 3.73%
ACS Applied Energy Materials
4 publications, 2.99%
Energy Storage Materials
4 publications, 2.99%
ACS applied materials & interfaces
4 publications, 2.99%
ACS Nano
3 publications, 2.24%
Nano Energy
3 publications, 2.24%
Journal of the American Chemical Society
3 publications, 2.24%
Journal of Power Sources
3 publications, 2.24%
Journal of Energy Chemistry
3 publications, 2.24%
Small
3 publications, 2.24%
Polymers
2 publications, 1.49%
Nano-Micro Letters
2 publications, 1.49%
Journal of Energy Storage
2 publications, 1.49%
Journal of Membrane Science
2 publications, 1.49%
Particuology
2 publications, 1.49%
Macromolecules
2 publications, 1.49%
Journal of Physical Chemistry C
2 publications, 1.49%
Nature Communications
2 publications, 1.49%
Journal of Materials Chemistry A
2 publications, 1.49%
Nature Nanotechnology
1 publication, 0.75%
Nano Research
1 publication, 0.75%
Cell Reports Physical Science
1 publication, 0.75%
Current Opinion in Solid State and Materials Science
1 publication, 0.75%
EnergyChem
1 publication, 0.75%
Journal of Industrial and Engineering Chemistry
1 publication, 0.75%
2
4
6
8
10
12

Citations by publishers

5
10
15
20
25
30
35
40
45
Elsevier
43 publications, 32.09%
Wiley
38 publications, 28.36%
American Chemical Society (ACS)
24 publications, 17.91%
Springer Nature
10 publications, 7.46%
Royal Society of Chemistry (RSC)
8 publications, 5.97%
Multidisciplinary Digital Publishing Institute (MDPI)
3 publications, 2.24%
IOP Publishing
2 publications, 1.49%
Korean Society of Industrial Engineering Chemistry
1 publication, 0.75%
Tsinghua University Press
1 publication, 0.75%
American Institute of Physics (AIP)
1 publication, 0.75%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 0.75%
Chinese Ceramic Society
1 publication, 0.75%
5
10
15
20
25
30
35
40
45
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Wang Y. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways // Nature Materials. 2021. Vol. 20. No. 9. pp. 1255-1263.
GOST all authors (up to 50) Copy
Wang Y., Zanelotti C. J., Wang X., Kerr R., Jin L., Kan W. H. H., Dingemans T. J., Forsyth M., Madsen L. A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways // Nature Materials. 2021. Vol. 20. No. 9. pp. 1255-1263.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41563-021-00995-4
UR - https://doi.org/10.1038/s41563-021-00995-4
TI - Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways
T2 - Nature Materials
AU - Wang, Ying
AU - Zanelotti, Curt J
AU - Wang, Xiaoen
AU - Kerr, Robert
AU - Jin, Liyu
AU - Kan, Wang Hay H.
AU - Dingemans, Theo J
AU - Forsyth, Maria
AU - Madsen, Louis A.
PY - 2021
DA - 2021/05/03 00:00:00
PB - Springer Nature
SP - 1255-1263
IS - 9
VL - 20
SN - 1476-1122
SN - 1476-4660
ER -
BibTex |
Cite this
BibTex Copy
@article{2021_Wang,
author = {Ying Wang and Curt J Zanelotti and Xiaoen Wang and Robert Kerr and Liyu Jin and Wang Hay H. Kan and Theo J Dingemans and Maria Forsyth and Louis A. Madsen},
title = {Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways},
journal = {Nature Materials},
year = {2021},
volume = {20},
publisher = {Springer Nature},
month = {may},
url = {https://doi.org/10.1038/s41563-021-00995-4},
number = {9},
pages = {1255--1263},
doi = {10.1038/s41563-021-00995-4}
}
MLA
Cite this
MLA Copy
Wang, Ying, et al. “Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways.” Nature Materials, vol. 20, no. 9, May. 2021, pp. 1255-1263. https://doi.org/10.1038/s41563-021-00995-4.
Found error?