Nature Materials, volume 21, issue 5, pages 533-539

Ultrafast exciton transport at early times in quantum dot solids

Zhilong Zhang 1
Jooyoung Sung 1, 2
Daniel. T. W. Toolan 3
Sanyang Han 1
Raj Pandya 1, 4
M. P. Weir 5, 6
James Xiao 1
Simon Dowland 1
Mengxia Liu 1
Anthony W Ryan 3
Richard A L Jones 7
Shujuan Huang 8
Show full list: 13 authors
Publication typeJournal Article
Publication date2022-03-07
Journal: Nature Materials
scimago Q1
SJR14.231
CiteScore62.2
Impact factor37.2
ISSN14761122, 14764660
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~102 cm2 s–1) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10–1–1 cm2 s–1). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids. Understanding exciton dynamics in quantum dots is important for realizing their potential in optoelectronics. Here, the authors use femtosecond transient absorption microscopy to reveal ultrafast exciton transport, enhanced at larger interdot distance and taking place within hundreds of femtoseconds after generation.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
1
2
3
4
5
6

Publishers

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?