том 23 издание 12 страницы 1695-1703

Origins of enhanced oxygen reduction activity of transition metal nitrides

Rui Zeng 1
Huiqi Li 1
Zixiao Shi 1
Lang Xu 2
Jinhui Meng 3
WEIXUAN XU 1
Hongsen Wang 1
Qihao Li 1
Christopher Pollock 4
David Muller 5, 6
Тип публикацииJournal Article
Дата публикации2024-09-03
scimago Q1
wos Q1
БС1
SJR14.204
CiteScore61.8
Impact factor38.5
ISSN14761122, 14764660
Краткое описание
Transition metal nitride (TMN-) based materials have recently emerged as promising non-precious-metal-containing electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. However, the lack of fundamental understanding of the oxide surface has limited insights into structure–(re)activity relationships and rational catalyst design. Here we demonstrate how a well-defined TMN can dictate/control the as-formed oxide surface and the resulting ORR electrocatalytic activity. Structural characterization of MnN nanocuboids revealed that an electrocatalytically active Mn3O4 shell grew epitaxially on the MnN core, with an expansive strain along the [010] direction to the surface Mn3O4. The strained Mn3O4 shell on the MnN core exhibited an intrinsic activity that was over 300% higher than that of pure Mn3O4. A combined electrochemical and computational investigation indicated/suggested that the enhancement probably originates from a more hydroxylated oxide surface resulting from the expansive strain. This work establishes a clear and definitive atomistic picture of the nitride/oxide interface and provides a comprehensive mechanistic understanding of the structure–reactivity relationship in TMNs, critical for other catalytic interfaces for different electrochemical processes. While transition metal nitrides are promising low-cost electrocatalysts for the oxygen reduction reaction in alkaline media, a fundamental understanding of their activity is still lacking. Here MnN nanocuboids with well-defined surface structures are investigated, providing atomistic insight and mechanistic understanding.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
Angewandte Chemie
5 публикаций, 6.85%
Angewandte Chemie - International Edition
5 публикаций, 6.85%
Advanced Energy Materials
4 публикации, 5.48%
Journal of the American Chemical Society
4 публикации, 5.48%
Advanced Functional Materials
4 публикации, 5.48%
Advanced Materials
3 публикации, 4.11%
Nature Communications
3 публикации, 4.11%
Chemical Engineering Journal
2 публикации, 2.74%
Nano Research
2 публикации, 2.74%
Chemistry of Materials
2 публикации, 2.74%
Journal of Colloid and Interface Science
2 публикации, 2.74%
Chinese Chemical Letters
2 публикации, 2.74%
Small
2 публикации, 2.74%
Progress in Materials Science
2 публикации, 2.74%
Nature Materials
1 публикация, 1.37%
Nature Chemical Engineering
1 публикация, 1.37%
Electrochimica Acta
1 публикация, 1.37%
Chinese Physics B
1 публикация, 1.37%
Journal of Materials Chemistry A
1 публикация, 1.37%
Chem
1 публикация, 1.37%
Applied Catalysis B: Environmental
1 публикация, 1.37%
International Journal of Hydrogen Energy
1 публикация, 1.37%
Journal of Electroanalytical Chemistry
1 публикация, 1.37%
Journal of Alloys and Compounds
1 публикация, 1.37%
Talanta
1 публикация, 1.37%
Coordination Chemistry Reviews
1 публикация, 1.37%
Science China Chemistry
1 публикация, 1.37%
Green Energy and Environment
1 публикация, 1.37%
Journal of Chemical Physics
1 публикация, 1.37%
Materials Reports Energy
1 публикация, 1.37%
1
2
3
4
5

Издатели

5
10
15
20
25
30
Elsevier
26 публикаций, 35.62%
Wiley
24 публикации, 32.88%
American Chemical Society (ACS)
9 публикаций, 12.33%
Springer Nature
7 публикаций, 9.59%
Royal Society of Chemistry (RSC)
3 публикации, 4.11%
Tsinghua University Press
2 публикации, 2.74%
IOP Publishing
1 публикация, 1.37%
AIP Publishing
1 публикация, 1.37%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
73
Поделиться
Цитировать
ГОСТ |
Цитировать
Zeng R. et al. Origins of enhanced oxygen reduction activity of transition metal nitrides // Nature Materials. 2024. Vol. 23. No. 12. pp. 1695-1703.
ГОСТ со всеми авторами (до 50) Скопировать
Zeng R., Li H., Shi Z., Xu L., Meng J., XU W., Wang H., Li Q., Pollock C., Lian T., Mavrikakis M., Muller D., Abruña H. D. Origins of enhanced oxygen reduction activity of transition metal nitrides // Nature Materials. 2024. Vol. 23. No. 12. pp. 1695-1703.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41563-024-01998-7
UR - https://www.nature.com/articles/s41563-024-01998-7
TI - Origins of enhanced oxygen reduction activity of transition metal nitrides
T2 - Nature Materials
AU - Zeng, Rui
AU - Li, Huiqi
AU - Shi, Zixiao
AU - Xu, Lang
AU - Meng, Jinhui
AU - XU, WEIXUAN
AU - Wang, Hongsen
AU - Li, Qihao
AU - Pollock, Christopher
AU - Lian, Tianquan
AU - Mavrikakis, Manos
AU - Muller, David
AU - Abruña, Héctor D.
PY - 2024
DA - 2024/09/03
PB - Springer Nature
SP - 1695-1703
IS - 12
VL - 23
PMID - 39227466
SN - 1476-1122
SN - 1476-4660
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Zeng,
author = {Rui Zeng and Huiqi Li and Zixiao Shi and Lang Xu and Jinhui Meng and WEIXUAN XU and Hongsen Wang and Qihao Li and Christopher Pollock and Tianquan Lian and Manos Mavrikakis and David Muller and Héctor D. Abruña},
title = {Origins of enhanced oxygen reduction activity of transition metal nitrides},
journal = {Nature Materials},
year = {2024},
volume = {23},
publisher = {Springer Nature},
month = {sep},
url = {https://www.nature.com/articles/s41563-024-01998-7},
number = {12},
pages = {1695--1703},
doi = {10.1038/s41563-024-01998-7}
}
MLA
Цитировать
Zeng, Rui, et al. “Origins of enhanced oxygen reduction activity of transition metal nitrides.” Nature Materials, vol. 23, no. 12, Sep. 2024, pp. 1695-1703. https://www.nature.com/articles/s41563-024-01998-7.