Selective area growth and stencil lithography for in situ fabricated quantum devices
Peter Schüffelgen
1, 2
,
Daniel Rosenbach
1, 2
,
Chuan Li
3
,
Tobias W Schmitt
1, 4
,
Michael Schleenvoigt
1
,
Abdur R Jalil
1
,
Sarah Schmitt
1
,
Jonas Kölzer
1
,
Meng Wang
2, 5
,
Benjamin Bennemann
1
,
Umut Parlak
1
,
Lidia Kibkalo
1
,
Stefan Trellenkamp
6
,
Thomas Grap
7
,
Doris Meertens
1
,
Martina Luysberg
1
,
Gregor Mussler
1, 2
,
Erwin Berenschot
3
,
Niels Tas
3
,
Alexander Brinkman
3
,
Thomas Schäpers
1, 2
,
Detlev Grützmacher
1, 2
Publication type: Journal Article
Publication date: 2019-07-29
scimago Q1
wos Q1
SJR: 14.612
CiteScore: 62.2
Impact factor: 34.9
ISSN: 17483387, 17483395
PubMed ID:
31358942
Atomic and Molecular Physics, and Optics
Condensed Matter Physics
General Materials Science
Electrical and Electronic Engineering
Bioengineering
Biomedical Engineering
Abstract
The interplay of Dirac physics and induced superconductivity at the interface of a 3D topological insulator (TI) with an s-wave superconductor (S) provides a new platform for topologically protected quantum computation based on elusive Majorana modes. To employ such S–TI hybrid devices in future topological quantum computation architectures, a process is required that allows for device fabrication under ultrahigh vacuum conditions. Here, we report on the selective area growth of (Bi,Sb)2Te3 TI thin films and stencil lithography of superconductive Nb for a full in situ fabrication of S–TI hybrid devices via molecular-beam epitaxy. A dielectric capping layer was deposited as a final step to protect the delicate surfaces of the S–TI hybrids at ambient conditions. Transport experiments in as-prepared Josephson junctions show highly transparent S–TI interfaces and a missing first Shapiro step, which indicates the presence of Majorana bound states. To move from single junctions towards complex circuitry for future topological quantum computation architectures, we monolithically integrated two aligned hardmasks to the substrate prior to growth. The presented process provides new possibilities to deliberately combine delicate quantum materials in situ at the nanoscale. An in situ only fabrication process for networks of topological insulator–superconductor Josephson junctions with high interface transparency is introduced, which holds some potential for the production of future topological quantum computing networks.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
2
4
6
8
10
|
|
|
Physical Review B
10 publications, 10.87%
|
|
|
Nanomaterials
6 publications, 6.52%
|
|
|
Physical Review Letters
4 publications, 4.35%
|
|
|
ACS Nano
4 publications, 4.35%
|
|
|
Physical Review Research
3 publications, 3.26%
|
|
|
Journal of Applied Physics
3 publications, 3.26%
|
|
|
Physical Review Materials
3 publications, 3.26%
|
|
|
Communications Physics
3 publications, 3.26%
|
|
|
Nano Letters
3 publications, 3.26%
|
|
|
Nanotechnology
3 publications, 3.26%
|
|
|
Superconductor Science and Technology
3 publications, 3.26%
|
|
|
Physica Status Solidi (B): Basic Research
3 publications, 3.26%
|
|
|
Communications Materials
2 publications, 2.17%
|
|
|
Advanced Materials
2 publications, 2.17%
|
|
|
Advanced Functional Materials
2 publications, 2.17%
|
|
|
Advanced Quantum Technologies
2 publications, 2.17%
|
|
|
Science advances
1 publication, 1.09%
|
|
|
Journal of Physical Chemistry Letters
1 publication, 1.09%
|
|
|
Physical Review Applied
1 publication, 1.09%
|
|
|
Physical Review X
1 publication, 1.09%
|
|
|
Science China: Physics, Mechanics and Astronomy
1 publication, 1.09%
|
|
|
Nature Reviews Physics
1 publication, 1.09%
|
|
|
Nature Communications
1 publication, 1.09%
|
|
|
npj Quantum Materials
1 publication, 1.09%
|
|
|
Nature Nanotechnology
1 publication, 1.09%
|
|
|
Journal of Physics Materials
1 publication, 1.09%
|
|
|
Chinese Physics Letters
1 publication, 1.09%
|
|
|
Chinese Physics B
1 publication, 1.09%
|
|
|
Semiconductor Science and Technology
1 publication, 1.09%
|
|
|
Microelectronic Engineering
1 publication, 1.09%
|
|
|
2
4
6
8
10
|
Publishers
|
5
10
15
20
25
|
|
|
American Physical Society (APS)
22 publications, 23.91%
|
|
|
Wiley
13 publications, 14.13%
|
|
|
American Chemical Society (ACS)
11 publications, 11.96%
|
|
|
Springer Nature
11 publications, 11.96%
|
|
|
IOP Publishing
11 publications, 11.96%
|
|
|
MDPI
6 publications, 6.52%
|
|
|
AIP Publishing
5 publications, 5.43%
|
|
|
Elsevier
3 publications, 3.26%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 publications, 2.17%
|
|
|
Stichting SciPost
2 publications, 2.17%
|
|
|
American Association for the Advancement of Science (AAAS)
1 publication, 1.09%
|
|
|
Science in China Press
1 publication, 1.09%
|
|
|
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 publication, 1.09%
|
|
|
Frontiers Media S.A.
1 publication, 1.09%
|
|
|
American Vacuum Society
1 publication, 1.09%
|
|
|
Tsinghua University Press
1 publication, 1.09%
|
|
|
5
10
15
20
25
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
94
Total citations:
94
Citations from 2024:
26
(28%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Schüffelgen P. et al. Selective area growth and stencil lithography for in situ fabricated quantum devices // Nature Nanotechnology. 2019. Vol. 14. No. 9. pp. 825-831.
GOST all authors (up to 50)
Copy
Schüffelgen P., Rosenbach D., Li C., Schmitt T. W., Schleenvoigt M., Jalil A. R., Schmitt S., Kölzer J., Wang M., Bennemann B., Parlak U., Kibkalo L., Trellenkamp S., Grap T., Meertens D., Luysberg M., Mussler G., Berenschot E., Tas N., Golubov A. A., Brinkman A., Schäpers T., Grützmacher D. Selective area growth and stencil lithography for in situ fabricated quantum devices // Nature Nanotechnology. 2019. Vol. 14. No. 9. pp. 825-831.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/s41565-019-0506-y
UR - https://doi.org/10.1038/s41565-019-0506-y
TI - Selective area growth and stencil lithography for in situ fabricated quantum devices
T2 - Nature Nanotechnology
AU - Schüffelgen, Peter
AU - Rosenbach, Daniel
AU - Li, Chuan
AU - Schmitt, Tobias W
AU - Schleenvoigt, Michael
AU - Jalil, Abdur R
AU - Schmitt, Sarah
AU - Kölzer, Jonas
AU - Wang, Meng
AU - Bennemann, Benjamin
AU - Parlak, Umut
AU - Kibkalo, Lidia
AU - Trellenkamp, Stefan
AU - Grap, Thomas
AU - Meertens, Doris
AU - Luysberg, Martina
AU - Mussler, Gregor
AU - Berenschot, Erwin
AU - Tas, Niels
AU - Golubov, Alexander A.
AU - Brinkman, Alexander
AU - Schäpers, Thomas
AU - Grützmacher, Detlev
PY - 2019
DA - 2019/07/29
PB - Springer Nature
SP - 825-831
IS - 9
VL - 14
PMID - 31358942
SN - 1748-3387
SN - 1748-3395
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2019_Schüffelgen,
author = {Peter Schüffelgen and Daniel Rosenbach and Chuan Li and Tobias W Schmitt and Michael Schleenvoigt and Abdur R Jalil and Sarah Schmitt and Jonas Kölzer and Meng Wang and Benjamin Bennemann and Umut Parlak and Lidia Kibkalo and Stefan Trellenkamp and Thomas Grap and Doris Meertens and Martina Luysberg and Gregor Mussler and Erwin Berenschot and Niels Tas and Alexander A. Golubov and Alexander Brinkman and Thomas Schäpers and Detlev Grützmacher},
title = {Selective area growth and stencil lithography for in situ fabricated quantum devices},
journal = {Nature Nanotechnology},
year = {2019},
volume = {14},
publisher = {Springer Nature},
month = {jul},
url = {https://doi.org/10.1038/s41565-019-0506-y},
number = {9},
pages = {825--831},
doi = {10.1038/s41565-019-0506-y}
}
Cite this
MLA
Copy
Schüffelgen, Peter, et al. “Selective area growth and stencil lithography for in situ fabricated quantum devices.” Nature Nanotechnology, vol. 14, no. 9, Jul. 2019, pp. 825-831. https://doi.org/10.1038/s41565-019-0506-y.