Parallel convolutional processing using an integrated photonic tensor core
J. Feldmann
1
,
Nathan Youngblood
2, 3
,
Maxim G. Karpov
4
,
H. Gehring
1
,
X. Li
2
,
M Stappers
1
,
Manuel Le Gallo
5
,
X. Fu
4
,
A Lukashchuk
4
,
A S Raja
4
,
Junqiu Liu
4
,
C. M. Wright
6
,
Abu Sebastian
5
,
Tobias J. Kippenberg
4
,
Wolfram H. P. Pernice
1, 7
,
H. Bhaskaran
2
4
5
IBM Research Europe, Rüschlikon, Switzerland
|
Тип публикации: Journal Article
Дата публикации: 2021-01-06
scimago Q1
wos Q1
БС1
SJR: 18.288
CiteScore: 78.1
Impact factor: 48.5
ISSN: 00280836, 14764687
PubMed ID:
33408373
Multidisciplinary
Краткое описание
With the proliferation of ultrahigh-speed mobile networks and internet-connected devices, along with the rise of artificial intelligence (AI)1, the world is generating exponentially increasing amounts of data that need to be processed in a fast and efficient way. Highly parallelized, fast and scalable hardware is therefore becoming progressively more important2. Here we demonstrate a computationally specific integrated photonic hardware accelerator (tensor core) that is capable of operating at speeds of trillions of multiply-accumulate operations per second (1012 MAC operations per second or tera-MACs per second). The tensor core can be considered as the optical analogue of an application-specific integrated circuit (ASIC). It achieves parallelized photonic in-memory computing using phase-change-material memory arrays and photonic chip-based optical frequency combs (soliton microcombs3). The computation is reduced to measuring the optical transmission of reconfigurable and non-resonant passive components and can operate at a bandwidth exceeding 14 gigahertz, limited only by the speed of the modulators and photodetectors. Given recent advances in hybrid integration of soliton microcombs at microwave line rates3–5, ultralow-loss silicon nitride waveguides6,7, and high-speed on-chip detectors and modulators, our approach provides a path towards full complementary metal–oxide–semiconductor (CMOS) wafer-scale integration of the photonic tensor core. Although we focus on convolutional processing, more generally our results indicate the potential of integrated photonics for parallel, fast, and efficient computational hardware in data-heavy AI applications such as autonomous driving, live video processing, and next-generation cloud computing services. An integrated photonic processor, based on phase-change-material memory arrays and chip-based optical frequency combs, which can operate at speeds of trillions of multiply-accumulate (MAC) operations per second, is demonstrated.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
10
20
30
40
50
60
70
80
|
|
|
Optics Express
72 публикации, 5.72%
|
|
|
Nature Communications
69 публикаций, 5.48%
|
|
|
Laser and Photonics Reviews
44 публикации, 3.49%
|
|
|
Journal of Lightwave Technology
37 публикаций, 2.94%
|
|
|
ACS Photonics
36 публикаций, 2.86%
|
|
|
Nanophotonics
34 публикации, 2.7%
|
|
|
Light: Science and Applications
32 публикации, 2.54%
|
|
|
Optica
31 публикация, 2.46%
|
|
|
IEEE Journal of Selected Topics in Quantum Electronics
29 публикаций, 2.3%
|
|
|
Photonics Research
28 публикаций, 2.22%
|
|
|
Science advances
25 публикаций, 1.99%
|
|
|
APL Photonics
24 публикации, 1.91%
|
|
|
Nature Photonics
24 публикации, 1.91%
|
|
|
Optics Letters
24 публикации, 1.91%
|
|
|
Advanced Materials
18 публикаций, 1.43%
|
|
|
Physical Review Applied
17 публикаций, 1.35%
|
|
|
Optical Materials Express
17 публикаций, 1.35%
|
|
|
Communications Physics
15 публикаций, 1.19%
|
|
|
Nature
14 публикаций, 1.11%
|
|
|
Neuromorphic Computing and Engineering
11 публикаций, 0.87%
|
|
|
Nanomaterials
10 публикаций, 0.79%
|
|
|
Photonics
10 публикаций, 0.79%
|
|
|
Scientific Reports
9 публикаций, 0.71%
|
|
|
Advanced Photonics
9 публикаций, 0.71%
|
|
|
Advanced Functional Materials
9 публикаций, 0.71%
|
|
|
Advanced Science
9 публикаций, 0.71%
|
|
|
ACS Nano
9 публикаций, 0.71%
|
|
|
eLight
8 публикаций, 0.64%
|
|
|
Physica Status Solidi - Rapid Research Letters
8 публикаций, 0.64%
|
|
|
10
20
30
40
50
60
70
80
|
Издатели
|
50
100
150
200
250
|
|
|
Springer Nature
236 публикаций, 18.75%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
196 публикаций, 15.57%
|
|
|
Optica Publishing Group
184 публикации, 14.61%
|
|
|
Wiley
126 публикаций, 10.01%
|
|
|
Elsevier
71 публикация, 5.64%
|
|
|
American Chemical Society (ACS)
57 публикаций, 4.53%
|
|
|
AIP Publishing
47 публикаций, 3.73%
|
|
|
MDPI
36 публикаций, 2.86%
|
|
|
Walter de Gruyter
36 публикаций, 2.86%
|
|
|
IOP Publishing
36 публикаций, 2.86%
|
|
|
American Physical Society (APS)
33 публикации, 2.62%
|
|
|
SPIE-Intl Soc Optical Eng
33 публикации, 2.62%
|
|
|
American Association for the Advancement of Science (AAAS)
33 публикации, 2.62%
|
|
|
Frontiers Media S.A.
9 публикаций, 0.71%
|
|
|
Association for Computing Machinery (ACM)
9 публикаций, 0.71%
|
|
|
Shanghai Institute of Optics and Fine Mechanics
7 публикаций, 0.56%
|
|
|
Royal Society of Chemistry (RSC)
6 публикаций, 0.48%
|
|
|
Taylor & Francis
6 публикаций, 0.48%
|
|
|
Opto-Electronic Advances
6 публикаций, 0.48%
|
|
|
Institute of Electronics, Information and Communications Engineers (IEICE)
4 публикации, 0.32%
|
|
|
Science in China Press
3 публикации, 0.24%
|
|
|
Tsinghua University Press
3 публикации, 0.24%
|
|
|
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
3 публикации, 0.24%
|
|
|
EDP Sciences
2 публикации, 0.16%
|
|
|
The Laser Society of Japan
2 публикации, 0.16%
|
|
|
Electromagnetics Academy
1 публикация, 0.08%
|
|
|
Cambridge University Press
1 публикация, 0.08%
|
|
|
University of Electronic Science and Technology of China
1 публикация, 0.08%
|
|
|
Social Science Electronic Publishing
1 публикация, 0.08%
|
|
|
50
100
150
200
250
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1.3k
Всего цитирований:
1264
Цитирований c 2024:
640
(50.83%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Feldmann J. et al. Parallel convolutional processing using an integrated photonic tensor core // Nature. 2021. Vol. 589. No. 7840. pp. 52-58.
ГОСТ со всеми авторами (до 50)
Скопировать
Feldmann J., Youngblood N., Karpov M. G., Gehring H., Li X., Stappers M., Le Gallo M., Fu X., Lukashchuk A., Raja A. S., Liu J., Wright C. M., Sebastian A., Kippenberg T. J., Pernice W. H. P., Bhaskaran H. Parallel convolutional processing using an integrated photonic tensor core // Nature. 2021. Vol. 589. No. 7840. pp. 52-58.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41586-020-03070-1
UR - https://doi.org/10.1038/s41586-020-03070-1
TI - Parallel convolutional processing using an integrated photonic tensor core
T2 - Nature
AU - Feldmann, J.
AU - Youngblood, Nathan
AU - Karpov, Maxim G.
AU - Gehring, H.
AU - Li, X.
AU - Stappers, M
AU - Le Gallo, Manuel
AU - Fu, X.
AU - Lukashchuk, A
AU - Raja, A S
AU - Liu, Junqiu
AU - Wright, C. M.
AU - Sebastian, Abu
AU - Kippenberg, Tobias J.
AU - Pernice, Wolfram H. P.
AU - Bhaskaran, H.
PY - 2021
DA - 2021/01/06
PB - Springer Nature
SP - 52-58
IS - 7840
VL - 589
PMID - 33408373
SN - 0028-0836
SN - 1476-4687
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Feldmann,
author = {J. Feldmann and Nathan Youngblood and Maxim G. Karpov and H. Gehring and X. Li and M Stappers and Manuel Le Gallo and X. Fu and A Lukashchuk and A S Raja and Junqiu Liu and C. M. Wright and Abu Sebastian and Tobias J. Kippenberg and Wolfram H. P. Pernice and H. Bhaskaran},
title = {Parallel convolutional processing using an integrated photonic tensor core},
journal = {Nature},
year = {2021},
volume = {589},
publisher = {Springer Nature},
month = {jan},
url = {https://doi.org/10.1038/s41586-020-03070-1},
number = {7840},
pages = {52--58},
doi = {10.1038/s41586-020-03070-1}
}
Цитировать
MLA
Скопировать
Feldmann, J., et al. “Parallel convolutional processing using an integrated photonic tensor core.” Nature, vol. 589, no. 7840, Jan. 2021, pp. 52-58. https://doi.org/10.1038/s41586-020-03070-1.