Nature, volume 596, issue 7873, pages 583-589

Highly accurate protein structure prediction with AlphaFold

John M. Jumper 1
Richard Evans 1
Alexander Pritzel 1
Timothy F G Green 1
Michael Figurnov 1
Olaf Ronneberger 1
Kathryn Tunyasuvunakool 1
Russ Bates 1
Augustin Žídek 1
Anna Potapenko 1
Alex Bridgland 1
Clemens Meyer 1
Simon Kohl 1
Andrew J Ballard 1
Andrew Cowie 1
Bernardino Romera Paredes 1
Stanislav Nikolov 1
Rishub Jain 1
Jonas Adler 1
Trevor Back 1
Stig Petersen 1
David Reiman 1
Ellen Clancy 1
Michal Zielinski 1
Michalina Pacholska 1
Tamas Berghammer 1
SEBASTIAN BODENSTEIN 1
D. J. SILVER 1
Oriol Vinyals 1
Andrew Senior 1
Koray Kavukcuoglu 1
Pushmeet Kohli 1
D. Hassabis 1
Publication typeJournal Article
Publication date2021-07-15
Journal: Nature
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor64.8
ISSN00280836, 14764687
Multidisciplinary
Abstract

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1–4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent progress10–14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.

Top-30

Journals

100
200
300
400
500
600
700
800
900
1000
Nature Communications
943 publications, 3.94%
International Journal of Molecular Sciences
514 publications, 2.15%
Nucleic Acids Research
349 publications, 1.46%
Proceedings of the National Academy of Sciences of the United States of America
338 publications, 1.41%
Journal of Biological Chemistry
336 publications, 1.41%
eLife
279 publications, 1.17%
Nature
265 publications, 1.11%
Scientific Reports
249 publications, 1.04%
International Journal of Biological Macromolecules
218 publications, 0.91%
Protein Science
215 publications, 0.9%
Journal of Chemical Information and Modeling
197 publications, 0.82%
Briefings in Bioinformatics
178 publications, 0.74%
Science advances
162 publications, 0.68%
Bioinformatics
158 publications, 0.66%
Journal of Molecular Biology
148 publications, 0.62%
Biomolecules
144 publications, 0.6%
Computational and Structural Biotechnology Journal
143 publications, 0.6%
Communications Biology
141 publications, 0.59%
Structure
137 publications, 0.57%
Nature Structural and Molecular Biology
133 publications, 0.56%
Molecules
130 publications, 0.54%
Molecular Cell
126 publications, 0.53%
mBio
125 publications, 0.52%
PLoS ONE
125 publications, 0.52%
Cell
124 publications, 0.52%
Science
123 publications, 0.51%
Current Opinion in Structural Biology
121 publications, 0.51%
Frontiers in Molecular Biosciences
120 publications, 0.5%
Cell Reports
116 publications, 0.49%
100
200
300
400
500
600
700
800
900
1000

Publishers

500
1000
1500
2000
2500
3000
3500
4000
4500
Cold Spring Harbor Laboratory
4266 publications, 17.84%
Elsevier
3891 publications, 16.27%
Springer Nature
3850 publications, 16.1%
MDPI
1702 publications, 7.12%
Wiley
1548 publications, 6.47%
American Chemical Society (ACS)
1314 publications, 5.5%
Oxford University Press
1148 publications, 4.8%
Frontiers Media S.A.
813 publications, 3.4%
American Society for Microbiology
434 publications, 1.82%
Public Library of Science (PLoS)
402 publications, 1.68%
Proceedings of the National Academy of Sciences (PNAS)
338 publications, 1.41%
American Association for the Advancement of Science (AAAS)
320 publications, 1.34%
Taylor & Francis
282 publications, 1.18%
eLife Sciences Publications
279 publications, 1.17%
Institute of Electrical and Electronics Engineers (IEEE)
242 publications, 1.01%
American Society for Biochemistry and Molecular Biology
224 publications, 0.94%
Royal Society of Chemistry (RSC)
216 publications, 0.9%
International Union of Crystallography (IUCr)
133 publications, 0.56%
Portland Press
101 publications, 0.42%
Rockefeller University Press
86 publications, 0.36%
Research Square Platform LLC
73 publications, 0.31%
The Company of Biologists
68 publications, 0.28%
European Molecular Biology Organization
65 publications, 0.27%
Annual Reviews
57 publications, 0.24%
AIP Publishing
54 publications, 0.23%
The Royal Society
48 publications, 0.2%
IOP Publishing
46 publications, 0.19%
Bentham Science Publishers Ltd.
45 publications, 0.19%
American Physical Society (APS)
44 publications, 0.18%
500
1000
1500
2000
2500
3000
3500
4000
4500
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Jumper J. M. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. Vol. 596. No. 7873. pp. 583-589.
GOST all authors (up to 50) Copy
Jumper J. M., Evans R., Pritzel A., Green T. F. G., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S., Ballard A. J., Cowie A., Romera Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., BODENSTEIN S., SILVER D. J., Vinyals O., Senior A., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. Vol. 596. No. 7873. pp. 583-589.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-021-03819-2
UR - https://doi.org/10.1038/s41586-021-03819-2
TI - Highly accurate protein structure prediction with AlphaFold
T2 - Nature
AU - Jumper, John M.
AU - Evans, Richard
AU - Pritzel, Alexander
AU - Green, Timothy F G
AU - Figurnov, Michael
AU - Ronneberger, Olaf
AU - Tunyasuvunakool, Kathryn
AU - Bates, Russ
AU - Žídek, Augustin
AU - Potapenko, Anna
AU - Bridgland, Alex
AU - Meyer, Clemens
AU - Kohl, Simon
AU - Ballard, Andrew J
AU - Cowie, Andrew
AU - Romera Paredes, Bernardino
AU - Nikolov, Stanislav
AU - Jain, Rishub
AU - Adler, Jonas
AU - Back, Trevor
AU - Petersen, Stig
AU - Reiman, David
AU - Clancy, Ellen
AU - Zielinski, Michal
AU - Steinegger, Martin
AU - Pacholska, Michalina
AU - Berghammer, Tamas
AU - BODENSTEIN, SEBASTIAN
AU - SILVER, D. J.
AU - Vinyals, Oriol
AU - Senior, Andrew
AU - Kavukcuoglu, Koray
AU - Kohli, Pushmeet
AU - Hassabis, D.
PY - 2021
DA - 2021/07/15
PB - Springer Nature
SP - 583-589
IS - 7873
VL - 596
PMID - 34265844
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex Copy
@article{2021_Jumper,
author = {John M. Jumper and Richard Evans and Alexander Pritzel and Timothy F G Green and Michael Figurnov and Olaf Ronneberger and Kathryn Tunyasuvunakool and Russ Bates and Augustin Žídek and Anna Potapenko and Alex Bridgland and Clemens Meyer and Simon Kohl and Andrew J Ballard and Andrew Cowie and Bernardino Romera Paredes and Stanislav Nikolov and Rishub Jain and Jonas Adler and Trevor Back and Stig Petersen and David Reiman and Ellen Clancy and Michal Zielinski and Martin Steinegger and Michalina Pacholska and Tamas Berghammer and SEBASTIAN BODENSTEIN and D. J. SILVER and Oriol Vinyals and Andrew Senior and Koray Kavukcuoglu and Pushmeet Kohli and D. Hassabis},
title = {Highly accurate protein structure prediction with AlphaFold},
journal = {Nature},
year = {2021},
volume = {596},
publisher = {Springer Nature},
month = {jul},
url = {https://doi.org/10.1038/s41586-021-03819-2},
number = {7873},
pages = {583--589},
doi = {10.1038/s41586-021-03819-2}
}
MLA
Cite this
MLA Copy
Jumper, John M., et al. “Highly accurate protein structure prediction with AlphaFold.” Nature, vol. 596, no. 7873, Jul. 2021, pp. 583-589. https://doi.org/10.1038/s41586-021-03819-2.
Found error?