Open Access
Open access
том 596 издание 7873 страницы 583-589

Highly accurate protein structure prediction with AlphaFold

John M. Jumper 1
Richard Evans 1
Alexander Pritzel 1
Timothy F G Green 1
Michael Figurnov 1
Olaf Ronneberger 1
Kathryn Tunyasuvunakool 1
Russ Bates 1
Augustin Žídek 1
Anna Potapenko 1
Alex Bridgland 1
Clemens Meyer 1
Simon Kohl 1
Andrew J Ballard 1
Andrew Cowie 1
Bernardino Romera Paredes 1
Stanislav Nikolov 1
Rishub Jain 1
Jonas Adler 1
Trevor Back 1
Stig Petersen 1
David Reiman 1
Ellen Clancy 1
Michal Zielinski 1
Michalina Pacholska 1
Tamas Berghammer 1
SEBASTIAN BODENSTEIN 1
D. J. SILVER 1
Oriol Vinyals 1
Andrew Senior 1
Koray Kavukcuoglu 1
Pushmeet Kohli 1
D. Hassabis 1
Тип публикацииJournal Article
Дата публикации2021-07-15
scimago Q1
wos Q1
БС1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Multidisciplinary
Краткое описание

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1–4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent progress10–14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.

Найдено 
Найдено 

Топ-30

Журналы

200
400
600
800
1000
1200
1400
1600
Nature Communications
1507 публикаций, 4.24%
bioRxiv
979 публикаций, 2.75%
International Journal of Molecular Sciences
666 публикаций, 1.87%
Proceedings of the National Academy of Sciences of the United States of America
497 публикаций, 1.4%
Nucleic Acids Research
482 публикации, 1.35%
Journal of Biological Chemistry
470 публикаций, 1.32%
eLife
399 публикаций, 1.12%
Scientific Reports
379 публикаций, 1.07%
International Journal of Biological Macromolecules
376 публикаций, 1.06%
Nature
358 публикаций, 1.01%
Journal of Chemical Information and Modeling
324 публикации, 0.91%
Protein Science
319 публикаций, 0.9%
Science advances
290 публикаций, 0.82%
Briefings in Bioinformatics
246 публикаций, 0.69%
Communications Biology
223 публикации, 0.63%
Bioinformatics
221 публикация, 0.62%
Journal of Molecular Biology
217 публикаций, 0.61%
Computational and Structural Biotechnology Journal
213 публикаций, 0.6%
PLoS ONE
203 публикации, 0.57%
Structure
199 публикаций, 0.56%
mBio
196 публикаций, 0.55%
Science
194 публикации, 0.55%
Molecular Cell
192 публикации, 0.54%
Nature Structural and Molecular Biology
191 публикация, 0.54%
Cell Reports
188 публикаций, 0.53%
Cell
185 публикаций, 0.52%
Proteins: Structure, Function and Genetics
182 публикации, 0.51%
Biomolecules
181 публикация, 0.51%
Journal of Agricultural and Food Chemistry
180 публикаций, 0.51%
200
400
600
800
1000
1200
1400
1600

Издатели

1000
2000
3000
4000
5000
6000
7000
Cold Spring Harbor Laboratory
6489 публикаций, 18.24%
Elsevier
6234 публикации, 17.52%
Springer Nature
6062 публикации, 17.04%
Wiley
2454 публикации, 6.9%
MDPI
2270 публикаций, 6.38%
American Chemical Society (ACS)
2039 публикаций, 5.73%
Oxford University Press
1679 публикаций, 4.72%
Frontiers Media S.A.
1042 публикации, 2.93%
American Society for Microbiology
637 публикаций, 1.79%
Public Library of Science (PLoS)
627 публикаций, 1.76%
American Association for the Advancement of Science (AAAS)
539 публикаций, 1.51%
Proceedings of the National Academy of Sciences (PNAS)
497 публикаций, 1.4%
Institute of Electrical and Electronics Engineers (IEEE)
456 публикаций, 1.28%
Taylor & Francis
444 публикации, 1.25%
eLife Sciences Publications
399 публикаций, 1.12%
Royal Society of Chemistry (RSC)
377 публикаций, 1.06%
American Society for Biochemistry and Molecular Biology
223 публикации, 0.63%
International Union of Crystallography (IUCr)
186 публикаций, 0.52%
Portland Press
131 публикация, 0.37%
Rockefeller University Press
118 публикаций, 0.33%
AIP Publishing
100 публикаций, 0.28%
The Company of Biologists
99 публикаций, 0.28%
Annual Reviews
92 публикации, 0.26%
Bentham Science Publishers Ltd.
80 публикаций, 0.22%
Association for Computing Machinery (ACM)
76 публикаций, 0.21%
The Royal Society
73 публикации, 0.21%
Research Square Platform LLC
73 публикации, 0.21%
American Physical Society (APS)
72 публикации, 0.2%
IOP Publishing
70 публикаций, 0.2%
1000
2000
3000
4000
5000
6000
7000
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
36k
Поделиться
Цитировать
ГОСТ |
Цитировать
Jumper J. M. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. Vol. 596. No. 7873. pp. 583-589.
ГОСТ со всеми авторами (до 50) Скопировать
Jumper J. M. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. Vol. 596. No. 7873. pp. 583-589.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41586-021-03819-2
UR - https://www.nature.com/articles/s41586-021-03819-2
TI - Highly accurate protein structure prediction with AlphaFold
T2 - Nature
AU - Jumper, John M.
AU - Evans, Richard
AU - Pritzel, Alexander
AU - Green, Timothy F G
AU - Figurnov, Michael
AU - Ronneberger, Olaf
AU - Tunyasuvunakool, Kathryn
AU - Bates, Russ
AU - Žídek, Augustin
AU - Potapenko, Anna
AU - Bridgland, Alex
AU - Meyer, Clemens
AU - Kohl, Simon
AU - Ballard, Andrew J
AU - Cowie, Andrew
AU - Romera Paredes, Bernardino
AU - Nikolov, Stanislav
AU - Jain, Rishub
AU - Adler, Jonas
AU - Back, Trevor
AU - Petersen, Stig
AU - Reiman, David
AU - Clancy, Ellen
AU - Zielinski, Michal
AU - Steinegger, Martin
AU - Pacholska, Michalina
AU - Berghammer, Tamas
AU - BODENSTEIN, SEBASTIAN
AU - SILVER, D. J.
AU - Vinyals, Oriol
AU - Senior, Andrew
AU - Kavukcuoglu, Koray
AU - Kohli, Pushmeet
AU - Hassabis, D.
PY - 2021
DA - 2021/07/15
PB - Springer Nature
SP - 583-589
IS - 7873
VL - 596
PMID - 34265844
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Jumper,
author = {John M. Jumper and Richard Evans and Alexander Pritzel and Timothy F G Green and Michael Figurnov and Olaf Ronneberger and Kathryn Tunyasuvunakool and Russ Bates and Augustin Žídek and Anna Potapenko and Alex Bridgland and Clemens Meyer and Simon Kohl and Andrew J Ballard and Andrew Cowie and Bernardino Romera Paredes and Stanislav Nikolov and Rishub Jain and Jonas Adler and Trevor Back and Stig Petersen and David Reiman and Ellen Clancy and Michal Zielinski and Martin Steinegger and Michalina Pacholska and Tamas Berghammer and SEBASTIAN BODENSTEIN and D. J. SILVER and Oriol Vinyals and Andrew Senior and Koray Kavukcuoglu and Pushmeet Kohli and D. Hassabis and others},
title = {Highly accurate protein structure prediction with AlphaFold},
journal = {Nature},
year = {2021},
volume = {596},
publisher = {Springer Nature},
month = {jul},
url = {https://www.nature.com/articles/s41586-021-03819-2},
number = {7873},
pages = {583--589},
doi = {10.1038/s41586-021-03819-2}
}
MLA
Цитировать
Jumper, John M., et al. “Highly accurate protein structure prediction with AlphaFold.” Nature, vol. 596, no. 7873, Jul. 2021, pp. 583-589. https://www.nature.com/articles/s41586-021-03819-2.