Nature, volume 614, issue 7947, pages 262-269

Operando studies reveal active Cu nanograins for CO2 electroreduction

Yang Yao 1, 2, 3
Sheena Louisia 1, 3
Sunmoon Yu 3, 4
Jianbo Jin 1
Inwhan Roh 1, 3
Chubai Chen 1, 3
Maria V. Fonseca Guzman 1, 3
Julian Feijóo 1, 3
Peng-Cheng Chen 1, 5
Hongsen Wang 6
Christopher J. Pollock 7
Xin Huang 7
Yu-Tsun Shao 8
Cheng Wang 9
David A. Muller 8, 10
Héctor D. Abruña 6, 10
Peidong Yang 1, 3, 4, 5
Publication typeJournal Article
Publication date2023-02-08
Journal: Nature
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor64.8
ISSN00280836, 14764687
Multidisciplinary
Abstract
Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3–5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C–C coupling. Quantitative structure–activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions. By investigation of structural dynamics during the life cycle of Cu nanocatalysts, correlation of multimodal operando techniques was found to serve as a powerful platform to advance understanding of their complex structural evolution.

Top-30

Journals

5
10
15
20
25
Angewandte Chemie
24 publications, 7.14%
Angewandte Chemie - International Edition
24 publications, 7.14%
Journal of the American Chemical Society
21 publications, 6.25%
ACS Catalysis
13 publications, 3.87%
Nature Communications
10 publications, 2.98%
Journal of Materials Chemistry A
8 publications, 2.38%
Advanced Materials
8 publications, 2.38%
Chemical Engineering Journal
7 publications, 2.08%
Chemical Science
6 publications, 1.79%
Applied Surface Science
6 publications, 1.79%
Small
6 publications, 1.79%
Current Opinion in Electrochemistry
6 publications, 1.79%
Advanced Energy Materials
6 publications, 1.79%
ACS Nano
5 publications, 1.49%
Nano Energy
5 publications, 1.49%
Chemical Society Reviews
4 publications, 1.19%
Microscopy and Microanalysis
4 publications, 1.19%
Nature Catalysis
4 publications, 1.19%
Applied Catalysis B: Environmental
4 publications, 1.19%
Advanced Functional Materials
4 publications, 1.19%
Journal of Colloid and Interface Science
4 publications, 1.19%
Nature Synthesis
4 publications, 1.19%
Chemistry - A European Journal
3 publications, 0.89%
Chemical Reviews
3 publications, 0.89%
Journal of Energy Chemistry
3 publications, 0.89%
Green Chemistry
3 publications, 0.89%
Energy & Fuels
3 publications, 0.89%
Nanoscale
3 publications, 0.89%
Chem Catalysis
3 publications, 0.89%
5
10
15
20
25

Publishers

10
20
30
40
50
60
70
80
90
100
Wiley
92 publications, 27.38%
Elsevier
86 publications, 25.6%
American Chemical Society (ACS)
66 publications, 19.64%
Royal Society of Chemistry (RSC)
38 publications, 11.31%
Springer Nature
36 publications, 10.71%
Oxford University Press
5 publications, 1.49%
MDPI
2 publications, 0.6%
American Association for the Advancement of Science (AAAS)
2 publications, 0.6%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 0.3%
Research Square Platform LLC
1 publication, 0.3%
OAE Publishing Inc.
1 publication, 0.3%
International Union of Crystallography (IUCr)
1 publication, 0.3%
Frontiers Media S.A.
1 publication, 0.3%
IOP Publishing
1 publication, 0.3%
EDP Sciences
1 publication, 0.3%
Proceedings of the National Academy of Sciences (PNAS)
1 publication, 0.3%
10
20
30
40
50
60
70
80
90
100
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Yao Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction // Nature. 2023. Vol. 614. No. 7947. pp. 262-269.
GOST all authors (up to 50) Copy
Yao Y., Louisia S., Yu S., Jin J., Roh I., Chen C., Fonseca Guzman M. V., Feijóo J., Chen P., Wang H., Pollock C. J., Huang X., Shao Y., Wang C., Muller D. A., Abruña H. D., Yang P. Operando studies reveal active Cu nanograins for CO2 electroreduction // Nature. 2023. Vol. 614. No. 7947. pp. 262-269.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-022-05540-0
UR - https://doi.org/10.1038/s41586-022-05540-0
TI - Operando studies reveal active Cu nanograins for CO2 electroreduction
T2 - Nature
AU - Yao, Yang
AU - Louisia, Sheena
AU - Yu, Sunmoon
AU - Jin, Jianbo
AU - Roh, Inwhan
AU - Chen, Chubai
AU - Fonseca Guzman, Maria V.
AU - Feijóo, Julian
AU - Chen, Peng-Cheng
AU - Wang, Hongsen
AU - Pollock, Christopher J.
AU - Huang, Xin
AU - Shao, Yu-Tsun
AU - Wang, Cheng
AU - Muller, David A.
AU - Abruña, Héctor D.
AU - Yang, Peidong
PY - 2023
DA - 2023/02/08
PB - Springer Nature
SP - 262-269
IS - 7947
VL - 614
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex Copy
@article{2023_Yao,
author = {Yang Yao and Sheena Louisia and Sunmoon Yu and Jianbo Jin and Inwhan Roh and Chubai Chen and Maria V. Fonseca Guzman and Julian Feijóo and Peng-Cheng Chen and Hongsen Wang and Christopher J. Pollock and Xin Huang and Yu-Tsun Shao and Cheng Wang and David A. Muller and Héctor D. Abruña and Peidong Yang},
title = {Operando studies reveal active Cu nanograins for CO2 electroreduction},
journal = {Nature},
year = {2023},
volume = {614},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1038/s41586-022-05540-0},
number = {7947},
pages = {262--269},
doi = {10.1038/s41586-022-05540-0}
}
MLA
Cite this
MLA Copy
Yao, Yang, et al. “Operando studies reveal active Cu nanograins for CO2 electroreduction.” Nature, vol. 614, no. 7947, Feb. 2023, pp. 262-269. https://doi.org/10.1038/s41586-022-05540-0.
Found error?