volume 614 issue 7947 pages 262-269

Operando studies reveal active Cu nanograins for CO2 electroreduction

Yang Yao 1, 2, 3
Sheena Louisia 1, 3
Sunmoon Yu 3, 4
Jianbo Jin 1
Inwhan Roh 1, 3
Chubai Chen 1, 3
Maria V. Fonseca Guzman 1, 3
Julian Feijóo 1, 3
Peng-Cheng Chen 1, 5
Hongsen Wang 6
Christopher J. Pollock 7
Xin Huang 7
Yu-Tsun Shao 8
Cheng Wang 9
David A. Muller 8, 10
Héctor D. Abruña 6, 10
Peidong Yang 1, 3, 4, 5
Publication typeJournal Article
Publication date2023-02-08
scimago Q1
wos Q1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Multidisciplinary
Abstract
Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3–5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C–C coupling. Quantitative structure–activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions. By investigation of structural dynamics during the life cycle of Cu nanocatalysts, correlation of multimodal operando techniques was found to serve as a powerful platform to advance understanding of their complex structural evolution.
Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
45
50
Angewandte Chemie
46 publications, 6.65%
Angewandte Chemie - International Edition
46 publications, 6.65%
Journal of the American Chemical Society
45 publications, 6.5%
Nature Communications
29 publications, 4.19%
ACS Catalysis
22 publications, 3.18%
Advanced Functional Materials
18 publications, 2.6%
Small
17 publications, 2.46%
Advanced Materials
17 publications, 2.46%
Chemical Engineering Journal
16 publications, 2.31%
Applied Catalysis B: Environmental
13 publications, 1.88%
ACS Nano
12 publications, 1.73%
Journal of Materials Chemistry A
11 publications, 1.59%
Journal of Colloid and Interface Science
11 publications, 1.59%
Chemical Science
9 publications, 1.3%
Advanced Energy Materials
8 publications, 1.16%
Chem Catalysis
8 publications, 1.16%
Nano Letters
8 publications, 1.16%
Science China Chemistry
8 publications, 1.16%
Chemical Society Reviews
7 publications, 1.01%
Nature Catalysis
7 publications, 1.01%
ACS applied materials & interfaces
7 publications, 1.01%
Microscopy and Microanalysis
6 publications, 0.87%
Applied Surface Science
6 publications, 0.87%
Green Chemistry
6 publications, 0.87%
Current Opinion in Electrochemistry
6 publications, 0.87%
Nanoscale
6 publications, 0.87%
Journal of Physical Chemistry C
6 publications, 0.87%
Matter
6 publications, 0.87%
Chemistry of Materials
6 publications, 0.87%
Chemistry - A European Journal
5 publications, 0.72%
5
10
15
20
25
30
35
40
45
50

Publishers

50
100
150
200
250
Wiley
204 publications, 29.48%
Elsevier
155 publications, 22.4%
American Chemical Society (ACS)
144 publications, 20.81%
Springer Nature
83 publications, 11.99%
Royal Society of Chemistry (RSC)
64 publications, 9.25%
Oxford University Press
10 publications, 1.45%
MDPI
4 publications, 0.58%
Proceedings of the National Academy of Sciences (PNAS)
4 publications, 0.58%
Tsinghua University Press
4 publications, 0.58%
American Association for the Advancement of Science (AAAS)
3 publications, 0.43%
AIP Publishing
3 publications, 0.43%
OAE Publishing Inc.
2 publications, 0.29%
Frontiers Media S.A.
2 publications, 0.29%
Science in China Press
2 publications, 0.29%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 0.14%
Research Square Platform LLC
1 publication, 0.14%
International Union of Crystallography (IUCr)
1 publication, 0.14%
IOP Publishing
1 publication, 0.14%
EDP Sciences
1 publication, 0.14%
Taylor & Francis
1 publication, 0.14%
Annual Reviews
1 publication, 0.14%
50
100
150
200
250
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
694
Share
Cite this
GOST |
Cite this
GOST Copy
Yao Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction // Nature. 2023. Vol. 614. No. 7947. pp. 262-269.
GOST all authors (up to 50) Copy
Yao Y., Louisia S., Yu S., Jin J., Roh I., Chen C., Fonseca Guzman M. V., Feijóo J., Chen P., Wang H., Pollock C. J., Huang X., Shao Y., Wang C., Muller D. A., Abruña H. D., Yang P. Operando studies reveal active Cu nanograins for CO2 electroreduction // Nature. 2023. Vol. 614. No. 7947. pp. 262-269.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-022-05540-0
UR - https://doi.org/10.1038/s41586-022-05540-0
TI - Operando studies reveal active Cu nanograins for CO2 electroreduction
T2 - Nature
AU - Yao, Yang
AU - Louisia, Sheena
AU - Yu, Sunmoon
AU - Jin, Jianbo
AU - Roh, Inwhan
AU - Chen, Chubai
AU - Fonseca Guzman, Maria V.
AU - Feijóo, Julian
AU - Chen, Peng-Cheng
AU - Wang, Hongsen
AU - Pollock, Christopher J.
AU - Huang, Xin
AU - Shao, Yu-Tsun
AU - Wang, Cheng
AU - Muller, David A.
AU - Abruña, Héctor D.
AU - Yang, Peidong
PY - 2023
DA - 2023/02/08
PB - Springer Nature
SP - 262-269
IS - 7947
VL - 614
PMID - 36755171
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Yao,
author = {Yang Yao and Sheena Louisia and Sunmoon Yu and Jianbo Jin and Inwhan Roh and Chubai Chen and Maria V. Fonseca Guzman and Julian Feijóo and Peng-Cheng Chen and Hongsen Wang and Christopher J. Pollock and Xin Huang and Yu-Tsun Shao and Cheng Wang and David A. Muller and Héctor D. Abruña and Peidong Yang},
title = {Operando studies reveal active Cu nanograins for CO2 electroreduction},
journal = {Nature},
year = {2023},
volume = {614},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1038/s41586-022-05540-0},
number = {7947},
pages = {262--269},
doi = {10.1038/s41586-022-05540-0}
}
MLA
Cite this
MLA Copy
Yao, Yang, et al. “Operando studies reveal active Cu nanograins for CO2 electroreduction.” Nature, vol. 614, no. 7947, Feb. 2023, pp. 262-269. https://doi.org/10.1038/s41586-022-05540-0.