том 20 издание 4 страницы 559-568

Cue: a deep-learning framework for structural variant discovery and genotyping

Тип публикацииJournal Article
Дата публикации2023-03-23
scimago Q1
wos Q1
БС1
SJR17.251
CiteScore49.0
Impact factor32.1
ISSN15487091, 15487105
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Краткое описание
Structural variants (SVs) are a major driver of genetic diversity and disease in the human genome and their discovery is imperative to advances in precision medicine. Existing SV callers rely on hand-engineered features and heuristics to model SVs, which cannot scale to the vast diversity of SVs nor fully harness the information available in sequencing datasets. Here we propose an extensible deep-learning framework, Cue, to call and genotype SVs that can learn complex SV abstractions directly from the data. At a high level, Cue converts alignments to images that encode SV-informative signals and uses a stacked hourglass convolutional neural network to predict the type, genotype and genomic locus of the SVs captured in each image. We show that Cue outperforms the state of the art in the detection of several classes of SVs on synthetic and real short-read data and that it can be easily extended to other sequencing platforms, while achieving competitive performance. Cue achieves versatile and performant structural variant calling and genotyping using a deep-learning approach.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Briefings in Bioinformatics
3 публикации, 6.52%
Bioinformatics
3 публикации, 6.52%
Nature Methods
2 публикации, 4.35%
American Journal of Medical Genetics, Part C: Seminars in Medical Genetics
1 публикация, 2.17%
Nucleic Acids Research
1 публикация, 2.17%
Cell
1 публикация, 2.17%
Nature Biotechnology
1 публикация, 2.17%
Evolutionary Applications
1 публикация, 2.17%
bioRxiv
1 публикация, 2.17%
Briefings in Functional Genomics
1 публикация, 2.17%
Molecular Ecology
1 публикация, 2.17%
Advances in Molecular Pathology
1 публикация, 2.17%
F1000Research
1 публикация, 2.17%
Journal of Human Genetics
1 публикация, 2.17%
Marine Life Science & Technology
1 публикация, 2.17%
BMC Genomics
1 публикация, 2.17%
Frontiers in Veterinary Science
1 публикация, 2.17%
National Science Review
1 публикация, 2.17%
Fundamental Research
1 публикация, 2.17%
OMICS A Journal of Integrative Biology
1 публикация, 2.17%
PLoS ONE
1 публикация, 2.17%
Journal of Translational Medicine
1 публикация, 2.17%
Genes
1 публикация, 2.17%
Acta Pharmaceutica Sinica B
1 публикация, 2.17%
Life
1 публикация, 2.17%
Genome Biology
1 публикация, 2.17%
Journal of Allergy and Clinical Immunology
1 публикация, 2.17%
Molecular Biology and Evolution
1 публикация, 2.17%
Molecules and Cells
1 публикация, 2.17%
1
2
3

Издатели

2
4
6
8
10
Springer Nature
10 публикаций, 21.74%
Oxford University Press
10 публикаций, 21.74%
Cold Spring Harbor Laboratory
10 публикаций, 21.74%
Elsevier
6 публикаций, 13.04%
Wiley
3 публикации, 6.52%
MDPI
2 публикации, 4.35%
F1000 Research
1 публикация, 2.17%
Frontiers Media S.A.
1 публикация, 2.17%
Mary Ann Liebert
1 публикация, 2.17%
Public Library of Science (PLoS)
1 публикация, 2.17%
2
4
6
8
10
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
46
Поделиться
Цитировать
ГОСТ |
Цитировать
Popic V. et al. Cue: a deep-learning framework for structural variant discovery and genotyping // Nature Methods. 2023. Vol. 20. No. 4. pp. 559-568.
ГОСТ со всеми авторами (до 50) Скопировать
Popic V., Rohlicek C., Cunial F., Hajirasouliha I., Meleshko D., Garimella K., Maheshwari A. Cue: a deep-learning framework for structural variant discovery and genotyping // Nature Methods. 2023. Vol. 20. No. 4. pp. 559-568.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41592-023-01799-x
UR - https://doi.org/10.1038/s41592-023-01799-x
TI - Cue: a deep-learning framework for structural variant discovery and genotyping
T2 - Nature Methods
AU - Popic, Victoria
AU - Rohlicek, Chris
AU - Cunial, Fabio
AU - Hajirasouliha, Iman
AU - Meleshko, Dmitry
AU - Garimella, Kiran
AU - Maheshwari, Anant
PY - 2023
DA - 2023/03/23
PB - Springer Nature
SP - 559-568
IS - 4
VL - 20
PMID - 36959322
SN - 1548-7091
SN - 1548-7105
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Popic,
author = {Victoria Popic and Chris Rohlicek and Fabio Cunial and Iman Hajirasouliha and Dmitry Meleshko and Kiran Garimella and Anant Maheshwari},
title = {Cue: a deep-learning framework for structural variant discovery and genotyping},
journal = {Nature Methods},
year = {2023},
volume = {20},
publisher = {Springer Nature},
month = {mar},
url = {https://doi.org/10.1038/s41592-023-01799-x},
number = {4},
pages = {559--568},
doi = {10.1038/s41592-023-01799-x}
}
MLA
Цитировать
Popic, Victoria, et al. “Cue: a deep-learning framework for structural variant discovery and genotyping.” Nature Methods, vol. 20, no. 4, Mar. 2023, pp. 559-568. https://doi.org/10.1038/s41592-023-01799-x.