Cue: a deep-learning framework for structural variant discovery and genotyping
Victoria Popic
1
,
Chris Rohlicek
1
,
Fabio Cunial
2
,
Iman Hajirasouliha
3, 4
,
Dmitry Meleshko
4, 5
,
Kiran Garimella
2
,
Anant Maheshwari
1
Тип публикации: Journal Article
Дата публикации: 2023-03-23
scimago Q1
wos Q1
БС1
SJR: 17.251
CiteScore: 49.0
Impact factor: 32.1
ISSN: 15487091, 15487105
PubMed ID:
36959322
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Краткое описание
Structural variants (SVs) are a major driver of genetic diversity and disease in the human genome and their discovery is imperative to advances in precision medicine. Existing SV callers rely on hand-engineered features and heuristics to model SVs, which cannot scale to the vast diversity of SVs nor fully harness the information available in sequencing datasets. Here we propose an extensible deep-learning framework, Cue, to call and genotype SVs that can learn complex SV abstractions directly from the data. At a high level, Cue converts alignments to images that encode SV-informative signals and uses a stacked hourglass convolutional neural network to predict the type, genotype and genomic locus of the SVs captured in each image. We show that Cue outperforms the state of the art in the detection of several classes of SVs on synthetic and real short-read data and that it can be easily extended to other sequencing platforms, while achieving competitive performance. Cue achieves versatile and performant structural variant calling and genotyping using a deep-learning approach.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Briefings in Bioinformatics
3 публикации, 6.52%
|
|
|
Bioinformatics
3 публикации, 6.52%
|
|
|
Nature Methods
2 публикации, 4.35%
|
|
|
American Journal of Medical Genetics, Part C: Seminars in Medical Genetics
1 публикация, 2.17%
|
|
|
Nucleic Acids Research
1 публикация, 2.17%
|
|
|
Cell
1 публикация, 2.17%
|
|
|
Nature Biotechnology
1 публикация, 2.17%
|
|
|
Evolutionary Applications
1 публикация, 2.17%
|
|
|
bioRxiv
1 публикация, 2.17%
|
|
|
Briefings in Functional Genomics
1 публикация, 2.17%
|
|
|
Molecular Ecology
1 публикация, 2.17%
|
|
|
Advances in Molecular Pathology
1 публикация, 2.17%
|
|
|
F1000Research
1 публикация, 2.17%
|
|
|
Journal of Human Genetics
1 публикация, 2.17%
|
|
|
Marine Life Science & Technology
1 публикация, 2.17%
|
|
|
BMC Genomics
1 публикация, 2.17%
|
|
|
Frontiers in Veterinary Science
1 публикация, 2.17%
|
|
|
National Science Review
1 публикация, 2.17%
|
|
|
Fundamental Research
1 публикация, 2.17%
|
|
|
OMICS A Journal of Integrative Biology
1 публикация, 2.17%
|
|
|
PLoS ONE
1 публикация, 2.17%
|
|
|
Journal of Translational Medicine
1 публикация, 2.17%
|
|
|
Genes
1 публикация, 2.17%
|
|
|
Acta Pharmaceutica Sinica B
1 публикация, 2.17%
|
|
|
Life
1 публикация, 2.17%
|
|
|
Genome Biology
1 публикация, 2.17%
|
|
|
Journal of Allergy and Clinical Immunology
1 публикация, 2.17%
|
|
|
Molecular Biology and Evolution
1 публикация, 2.17%
|
|
|
Molecules and Cells
1 публикация, 2.17%
|
|
|
1
2
3
|
Издатели
|
2
4
6
8
10
|
|
|
Springer Nature
10 публикаций, 21.74%
|
|
|
Oxford University Press
10 публикаций, 21.74%
|
|
|
Cold Spring Harbor Laboratory
10 публикаций, 21.74%
|
|
|
Elsevier
6 публикаций, 13.04%
|
|
|
Wiley
3 публикации, 6.52%
|
|
|
MDPI
2 публикации, 4.35%
|
|
|
F1000 Research
1 публикация, 2.17%
|
|
|
Frontiers Media S.A.
1 публикация, 2.17%
|
|
|
Mary Ann Liebert
1 публикация, 2.17%
|
|
|
Public Library of Science (PLoS)
1 публикация, 2.17%
|
|
|
2
4
6
8
10
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
46
Всего цитирований:
46
Цитирований c 2024:
40
(86.95%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Popic V. et al. Cue: a deep-learning framework for structural variant discovery and genotyping // Nature Methods. 2023. Vol. 20. No. 4. pp. 559-568.
ГОСТ со всеми авторами (до 50)
Скопировать
Popic V., Rohlicek C., Cunial F., Hajirasouliha I., Meleshko D., Garimella K., Maheshwari A. Cue: a deep-learning framework for structural variant discovery and genotyping // Nature Methods. 2023. Vol. 20. No. 4. pp. 559-568.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41592-023-01799-x
UR - https://doi.org/10.1038/s41592-023-01799-x
TI - Cue: a deep-learning framework for structural variant discovery and genotyping
T2 - Nature Methods
AU - Popic, Victoria
AU - Rohlicek, Chris
AU - Cunial, Fabio
AU - Hajirasouliha, Iman
AU - Meleshko, Dmitry
AU - Garimella, Kiran
AU - Maheshwari, Anant
PY - 2023
DA - 2023/03/23
PB - Springer Nature
SP - 559-568
IS - 4
VL - 20
PMID - 36959322
SN - 1548-7091
SN - 1548-7105
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Popic,
author = {Victoria Popic and Chris Rohlicek and Fabio Cunial and Iman Hajirasouliha and Dmitry Meleshko and Kiran Garimella and Anant Maheshwari},
title = {Cue: a deep-learning framework for structural variant discovery and genotyping},
journal = {Nature Methods},
year = {2023},
volume = {20},
publisher = {Springer Nature},
month = {mar},
url = {https://doi.org/10.1038/s41592-023-01799-x},
number = {4},
pages = {559--568},
doi = {10.1038/s41592-023-01799-x}
}
Цитировать
MLA
Скопировать
Popic, Victoria, et al. “Cue: a deep-learning framework for structural variant discovery and genotyping.” Nature Methods, vol. 20, no. 4, Mar. 2023, pp. 559-568. https://doi.org/10.1038/s41592-023-01799-x.