Design of potent antimalarials with generative chemistry
William J Godinez
1
,
Eric J. Ma
2
,
Alexander T Chao
1, 3
,
Luying Pei
1, 3
,
Peter Skewes Cox
1
,
Stephen Canham
2
,
Jeremy L. Jenkins
2
,
Joseph M. Young
1, 3
,
Eric J. Martin
1
,
W Armand Guiguemde
1, 3
1
Novartis Institutes for Biomedical Research, Emeryville, USA
|
2
Novartis Institutes for BioMedical Research, Cambridge, USA
|
3
Novartis Institute for Tropical Diseases, Emeryville, USA
|
Тип публикации: Journal Article
Дата публикации: 2022-02-23
scimago Q1
wos Q1
БС1
SJR: 5.876
CiteScore: 37.6
Impact factor: 23.9
ISSN: 25225839
Computer Networks and Communications
Artificial Intelligence
Software
Human-Computer Interaction
Computer Vision and Pattern Recognition
Краткое описание
Recent advances in generative modelling allow designing novel compounds through deep neural networks. One such neural network model, JT-VAE (the Junction Tree Variational Auto-Encoder), excels at proposing chemically valid structures. Here, on the basis of JT-VAE, we built a generative modelling approach, JAEGER, for finding novel chemical matter with desired bioactivity. Using JAEGER, we designed compounds to inhibit malaria. To prioritize the compounds for synthesis, we used the in-house pQSAR (Profile-QSAR) program, a massively multitask bioactivity model based on 12,000 Novartis assays. On the basis of pQSAR activity predictions, we selected, synthesized and experimentally profiled two compounds. Both compounds exhibited low nanomolar activity in a malaria proliferation assay as well as a biochemical assay measuring activity against PI(4)K, which is an essential kinase that regulates intracellular development in malaria. The compounds also showed low activity in a cytotoxicity assay. Our findings show that JAEGER is a viable approach for finding novel active compounds for drug discovery. Tropical diseases, such as malaria, can develop resistance to specific drugs. Godinez and colleagues present here a generative design approach to find new anti-malarial drugs to circumvent this resistance.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Nature Machine Intelligence
5 публикаций, 11.36%
|
|
|
Computers in Biology and Medicine
3 публикации, 6.82%
|
|
|
Journal of Medicinal Chemistry
2 публикации, 4.55%
|
|
|
Nature Communications
2 публикации, 4.55%
|
|
|
International Journal of Molecular Sciences
2 публикации, 4.55%
|
|
|
ACS Infectious Diseases
1 публикация, 2.27%
|
|
|
Bioinformatics
1 публикация, 2.27%
|
|
|
Nature Reviews Drug Discovery
1 публикация, 2.27%
|
|
|
Journal of Chemical Information and Modeling
1 публикация, 2.27%
|
|
|
ACS Chemical Biology
1 публикация, 2.27%
|
|
|
Molecules
1 публикация, 2.27%
|
|
|
Lipophilicity in Drug Action and Toxicology
1 публикация, 2.27%
|
|
|
Nature Chemical Biology
1 публикация, 2.27%
|
|
|
Processes
1 публикация, 2.27%
|
|
|
Journal of Environmental Sciences
1 публикация, 2.27%
|
|
|
Clinical Pharmacokinetics
1 публикация, 2.27%
|
|
|
Scientia Sinica Chimica
1 публикация, 2.27%
|
|
|
Nature Medicine
1 публикация, 2.27%
|
|
|
Nature Biomedical Engineering
1 публикация, 2.27%
|
|
|
Communications Biology
1 публикация, 2.27%
|
|
|
npj Antimicrobials and Resistance
1 публикация, 2.27%
|
|
|
Current Computer-Aided Drug Design
1 публикация, 2.27%
|
|
|
Acta Pharmaceutica Sinica B
1 публикация, 2.27%
|
|
|
Chemical Science
1 публикация, 2.27%
|
|
|
Molecular Diversity
1 публикация, 2.27%
|
|
|
Interdisciplinary sciences, computational life sciences
1 публикация, 2.27%
|
|
|
Nature Microbiology
1 публикация, 2.27%
|
|
|
Analytical Chemistry
1 публикация, 2.27%
|
|
|
Journal of Cheminformatics
1 публикация, 2.27%
|
|
|
1
2
3
4
5
|
Издатели
|
2
4
6
8
10
12
14
16
18
|
|
|
Springer Nature
18 публикаций, 40.91%
|
|
|
American Chemical Society (ACS)
6 публикаций, 13.64%
|
|
|
Elsevier
5 публикаций, 11.36%
|
|
|
MDPI
4 публикации, 9.09%
|
|
|
Cold Spring Harbor Laboratory
3 публикации, 6.82%
|
|
|
Oxford University Press
2 публикации, 4.55%
|
|
|
Wiley
1 публикация, 2.27%
|
|
|
Science in China Press
1 публикация, 2.27%
|
|
|
Bentham Science Publishers Ltd.
1 публикация, 2.27%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 2.27%
|
|
|
2
4
6
8
10
12
14
16
18
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
45
Всего цитирований:
45
Цитирований c 2024:
32
(72.73%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Godinez W. J. et al. Design of potent antimalarials with generative chemistry // Nature Machine Intelligence. 2022. Vol. 4. No. 2. pp. 180-186.
ГОСТ со всеми авторами (до 50)
Скопировать
Godinez W. J., Ma E. J., Chao A. T., Pei L., Skewes Cox P., Canham S., Jenkins J. L., Young J. M., Martin E. J., Guiguemde W. A. Design of potent antimalarials with generative chemistry // Nature Machine Intelligence. 2022. Vol. 4. No. 2. pp. 180-186.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s42256-022-00448-w
UR - https://doi.org/10.1038/s42256-022-00448-w
TI - Design of potent antimalarials with generative chemistry
T2 - Nature Machine Intelligence
AU - Godinez, William J
AU - Ma, Eric J.
AU - Chao, Alexander T
AU - Pei, Luying
AU - Skewes Cox, Peter
AU - Canham, Stephen
AU - Jenkins, Jeremy L.
AU - Young, Joseph M.
AU - Martin, Eric J.
AU - Guiguemde, W Armand
PY - 2022
DA - 2022/02/23
PB - Springer Nature
SP - 180-186
IS - 2
VL - 4
SN - 2522-5839
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Godinez,
author = {William J Godinez and Eric J. Ma and Alexander T Chao and Luying Pei and Peter Skewes Cox and Stephen Canham and Jeremy L. Jenkins and Joseph M. Young and Eric J. Martin and W Armand Guiguemde},
title = {Design of potent antimalarials with generative chemistry},
journal = {Nature Machine Intelligence},
year = {2022},
volume = {4},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1038/s42256-022-00448-w},
number = {2},
pages = {180--186},
doi = {10.1038/s42256-022-00448-w}
}
Цитировать
MLA
Скопировать
Godinez, William J., et al. “Design of potent antimalarials with generative chemistry.” Nature Machine Intelligence, vol. 4, no. 2, Feb. 2022, pp. 180-186. https://doi.org/10.1038/s42256-022-00448-w.