Tandem mass spectrum prediction for small molecules using graph transformers
6
Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
|
Тип публикации: Journal Article
Дата публикации: 2024-04-05
scimago Q1
wos Q1
БС1
SJR: 5.876
CiteScore: 37.6
Impact factor: 23.9
ISSN: 25225839
Computer Networks and Communications
Artificial Intelligence
Software
Human-Computer Interaction
Computer Vision and Pattern Recognition
Краткое описание
Tandem mass spectra capture fragmentation patterns that provide key structural information about molecules. Although mass spectrometry is applied in many areas, the vast majority of small molecules lack experimental reference spectra. For over 70 years, spectrum prediction has remained a key challenge in the field. Existing deep learning methods do not leverage global structure in the molecule, potentially resulting in difficulties when generalizing to new data. In this work we propose the MassFormer model for accurately predicting tandem mass spectra. MassFormer uses a graph transformer architecture to model long-distance relationships between atoms in the molecule. The transformer module is initialized with parameters obtained through a chemical pretraining task, then fine-tuned on spectral data. MassFormer outperforms competing approaches for spectrum prediction on multiple datasets and accurately models the effects of collision energy. Gradient-based attribution methods reveal that MassFormer can identify compositional relationships between peaks in the spectrum. When applied to spectrum identification problems, MassFormer generally surpasses the performance of existing prediction-based methods. Identifying compounds in tandem mass spectrometry requires extensive databases of known compounds or computational methods to simulate spectra for samples not found in databases. Simulating tandem mass spectra is still challenging, and long-range connections in particular are difficult to model for graph neural networks. Young and colleagues use a graph transformer model to learn patterns of long-distance relations between atoms and molecules.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
Analytical Chemistry
4 публикации, 9.3%
|
|
|
Journal of Chemical Information and Modeling
3 публикации, 6.98%
|
|
|
Nature Computational Science
3 публикации, 6.98%
|
|
|
Communications Chemistry
2 публикации, 4.65%
|
|
|
Journal of the American Society for Mass Spectrometry
2 публикации, 4.65%
|
|
|
Nature Communications
2 публикации, 4.65%
|
|
|
Expert Review of Proteomics
2 публикации, 4.65%
|
|
|
Plant Journal
1 публикация, 2.33%
|
|
|
Analytical and Bioanalytical Chemistry
1 публикация, 2.33%
|
|
|
Computational and Structural Biotechnology Journal
1 публикация, 2.33%
|
|
|
Journal of Pharmaceutical Analysis
1 публикация, 2.33%
|
|
|
Nature Machine Intelligence
1 публикация, 2.33%
|
|
|
Faraday Discussions
1 публикация, 2.33%
|
|
|
Nature Protocols
1 публикация, 2.33%
|
|
|
TrAC - Trends in Analytical Chemistry
1 публикация, 2.33%
|
|
|
Journal of the Mass Spectrometry Society of Japan
1 публикация, 2.33%
|
|
|
Journal of Physical Chemistry A
1 публикация, 2.33%
|
|
|
Annual Review of Analytical Chemistry
1 публикация, 2.33%
|
|
|
Food Chemistry
1 публикация, 2.33%
|
|
|
Bioinformatics
1 публикация, 2.33%
|
|
|
Analytica Chimica Acta
1 публикация, 2.33%
|
|
|
Journal of Cheminformatics
1 публикация, 2.33%
|
|
|
Briefings in Bioinformatics
1 публикация, 2.33%
|
|
|
Environment & Health
1 публикация, 2.33%
|
|
|
Matter
1 публикация, 2.33%
|
|
|
Science of Traditional Chinese Medicine
1 публикация, 2.33%
|
|
|
Environmental Science & Technology
1 публикация, 2.33%
|
|
|
Lecture Notes in Computer Science
1 публикация, 2.33%
|
|
|
Chemometrics and Intelligent Laboratory Systems
1 публикация, 2.33%
|
|
|
1
2
3
4
|
Издатели
|
2
4
6
8
10
12
|
|
|
Springer Nature
12 публикаций, 27.91%
|
|
|
American Chemical Society (ACS)
12 публикаций, 27.91%
|
|
|
Elsevier
7 публикаций, 16.28%
|
|
|
Taylor & Francis
2 публикации, 4.65%
|
|
|
Cold Spring Harbor Laboratory
2 публикации, 4.65%
|
|
|
Oxford University Press
2 публикации, 4.65%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 4.65%
|
|
|
Wiley
1 публикация, 2.33%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 2.33%
|
|
|
The Mass Spectrometry Society of Japan
1 публикация, 2.33%
|
|
|
Annual Reviews
1 публикация, 2.33%
|
|
|
2
4
6
8
10
12
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
43
Всего цитирований:
43
Цитирований c 2024:
42
(97.67%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Young A. et al. Tandem mass spectrum prediction for small molecules using graph transformers // Nature Machine Intelligence. 2024. Vol. 6. No. 4. pp. 404-416.
ГОСТ со всеми авторами (до 50)
Скопировать
Young A., Röst H., Wang B. Tandem mass spectrum prediction for small molecules using graph transformers // Nature Machine Intelligence. 2024. Vol. 6. No. 4. pp. 404-416.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s42256-024-00816-8
UR - https://www.nature.com/articles/s42256-024-00816-8
TI - Tandem mass spectrum prediction for small molecules using graph transformers
T2 - Nature Machine Intelligence
AU - Young, Adamo
AU - Röst, Hannes
AU - Wang, Bo
PY - 2024
DA - 2024/04/05
PB - Springer Nature
SP - 404-416
IS - 4
VL - 6
SN - 2522-5839
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Young,
author = {Adamo Young and Hannes Röst and Bo Wang},
title = {Tandem mass spectrum prediction for small molecules using graph transformers},
journal = {Nature Machine Intelligence},
year = {2024},
volume = {6},
publisher = {Springer Nature},
month = {apr},
url = {https://www.nature.com/articles/s42256-024-00816-8},
number = {4},
pages = {404--416},
doi = {10.1038/s42256-024-00816-8}
}
Цитировать
MLA
Скопировать
Young, Adamo, et al. “Tandem mass spectrum prediction for small molecules using graph transformers.” Nature Machine Intelligence, vol. 6, no. 4, Apr. 2024, pp. 404-416. https://www.nature.com/articles/s42256-024-00816-8.