Soft Matter, volume 18, issue 4, pages 832-840
Diffusive dynamics of charged nanoparticles in convex lens-induced confinement
Publication type: Journal Article
Publication date: 2022-01-04
Journal:
Soft Matter
scimago Q1
SJR: 0.783
CiteScore: 6.0
Impact factor: 2.9
ISSN: 1744683X, 17446848
General Chemistry
Condensed Matter Physics
Abstract
Transport through heterogeneous confined geometries is encountered in many processes and applications such as filtration, drug delivery, and enhanced oil recovery. We have used differential dynamic microscopy (DDM) and particle tracking to investigate dynamics of 36 nm negatively-charged polystyrene particles in convex lens-induced confinement (CLiC). The confinement gap height was controlled from 0.085 μm to 3.6 mm by sandwiching the aqueous particle solution between a glass coverslip and a convex lens using a homemade sample holder. With an inverted fluorescence microscope, sequences of micrographs were taken at various radial positions and gap heights for five particle concentrations (i.e. φ = 0.5 × 10-5, 1 × 10-5, 5 × 10-5, 10 × 10-5, 50 × 10-5) and ionic strengths ranging from 10-3 to 150 mM. The resulting image structure functions were fitted with a simple exponential model to extract the ensemble-averaged diffusive dynamics. It was found that particle diffusion was more hindered as a function of increased confinement. In addition, the ensemble-averaged diffusion coefficient was found to depend on the bulk concentration, and the concentration dependence increased as a function of confinement. Increasing particle and salt concentration led to confinement-dependent adsorption onto the geometry surface. Overall, we show that CLiC devices are simple and effective and can be used to study dynamics in continuous confinement from sub 100 nm to 100's of μm. These findings could lead to better understanding of separations and interactions in confining devices.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.