том 142 издание 21 страницы 4067-4074

Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution

Jinchao Liu 1
Margarita Osadchy 2
Lorna Ashton 3
Michael Foster 4
Christopher J Solomon 5
STUART GIBSON 5
Тип публикацииJournal Article
Дата публикации2017-09-28
scimago Q2
wos Q2
БС1
SJR0.617
CiteScore7.0
Impact factor3.3
ISSN00032654, 13645528, 07417918
Biochemistry
Spectroscopy
Analytical Chemistry
Electrochemistry
Environmental Chemistry
Краткое описание
Machine learning methods have found many applications in Raman spectroscopy, especially for the identification of chemical species. However, almost all of these methods require non-trivial preprocessing such as baseline correction and/or PCA as an essential step. Here we describe our unified solution for the identification of chemical species in which a convolutional neural network is trained to automatically identify substances according to their Raman spectrum without the need for preprocessing. We evaluated our approach using the RRUFF spectral database, comprising mineral sample data. Superior classification performance is demonstrated compared with other frequently used machine learning algorithms including the popular support vector machine method.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
23 публикации, 5.58%
Analytical Chemistry
22 публикации, 5.34%
The Analyst
14 публикаций, 3.4%
Journal of Raman Spectroscopy
13 публикаций, 3.16%
Chemometrics and Intelligent Laboratory Systems
12 публикаций, 2.91%
Scientific Reports
10 публикаций, 2.43%
Analytica Chimica Acta
7 публикаций, 1.7%
Journal of Chemometrics
7 публикаций, 1.7%
Applied Spectroscopy
5 публикаций, 1.21%
Sensors
5 публикаций, 1.21%
Molecules
5 публикаций, 1.21%
Vibrational Spectroscopy
5 публикаций, 1.21%
ACS Nano
5 публикаций, 1.21%
npj Computational Materials
4 публикации, 0.97%
Applied Sciences (Switzerland)
4 публикации, 0.97%
Computers and Electronics in Agriculture
4 публикации, 0.97%
Sensors and Actuators, B: Chemical
4 публикации, 0.97%
Journal of Biophotonics
4 публикации, 0.97%
ACS Omega
4 публикации, 0.97%
Digital Discovery
4 публикации, 0.97%
IEEE Access
4 публикации, 0.97%
Analytical and Bioanalytical Chemistry
3 публикации, 0.73%
TrAC - Trends in Analytical Chemistry
3 публикации, 0.73%
Chemosphere
3 публикации, 0.73%
Heliyon
3 публикации, 0.73%
ACS Sensors
3 публикации, 0.73%
Analytical Methods
3 публикации, 0.73%
Biomedical Optics Express
3 публикации, 0.73%
Applied and Environmental Microbiology
3 публикации, 0.73%
5
10
15
20
25

Издатели

20
40
60
80
100
120
Elsevier
118 публикаций, 28.64%
Wiley
48 публикаций, 11.65%
American Chemical Society (ACS)
46 публикаций, 11.17%
Springer Nature
42 публикации, 10.19%
MDPI
34 публикации, 8.25%
Institute of Electrical and Electronics Engineers (IEEE)
31 публикация, 7.52%
Royal Society of Chemistry (RSC)
28 публикаций, 6.8%
Optica Publishing Group
8 публикаций, 1.94%
SAGE
6 публикаций, 1.46%
Frontiers Media S.A.
6 публикаций, 1.46%
Taylor & Francis
5 публикаций, 1.21%
AIP Publishing
4 публикации, 0.97%
IOP Publishing
3 публикации, 0.73%
American Society for Microbiology
3 публикации, 0.73%
PeerJ
1 публикация, 0.24%
Baishideng Publishing Group
1 публикация, 0.24%
Japan Society of Applied Physics
1 публикация, 0.24%
Gai Kan Bianjibu
1 публикация, 0.24%
IntechOpen
1 публикация, 0.24%
Cold Spring Harbor Laboratory
1 публикация, 0.24%
Hindawi Limited
1 публикация, 0.24%
IWA Publishing
1 публикация, 0.24%
American Association for the Advancement of Science (AAAS)
1 публикация, 0.24%
Walter de Gruyter
1 публикация, 0.24%
Oxford University Press
1 публикация, 0.24%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 0.24%
Tsinghua University Press
1 публикация, 0.24%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 0.24%
SPIE-Intl Soc Optical Eng
1 публикация, 0.24%
20
40
60
80
100
120
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
413
Поделиться
Цитировать
ГОСТ |
Цитировать
Liu J. et al. Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution // The Analyst. 2017. Vol. 142. No. 21. pp. 4067-4074.
ГОСТ со всеми авторами (до 50) Скопировать
Liu J., Osadchy M., Ashton L., Foster M., Solomon C. J., GIBSON S. Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution // The Analyst. 2017. Vol. 142. No. 21. pp. 4067-4074.
RIS |
Цитировать
TY - JOUR
DO - 10.1039/C7AN01371J
UR - https://doi.org/10.1039/C7AN01371J
TI - Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution
T2 - The Analyst
AU - Liu, Jinchao
AU - Osadchy, Margarita
AU - Ashton, Lorna
AU - Foster, Michael
AU - Solomon, Christopher J
AU - GIBSON, STUART
PY - 2017
DA - 2017/09/28
PB - Royal Society of Chemistry (RSC)
SP - 4067-4074
IS - 21
VL - 142
PMID - 28993828
SN - 0003-2654
SN - 1364-5528
SN - 0741-7918
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2017_Liu,
author = {Jinchao Liu and Margarita Osadchy and Lorna Ashton and Michael Foster and Christopher J Solomon and STUART GIBSON},
title = {Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution},
journal = {The Analyst},
year = {2017},
volume = {142},
publisher = {Royal Society of Chemistry (RSC)},
month = {sep},
url = {https://doi.org/10.1039/C7AN01371J},
number = {21},
pages = {4067--4074},
doi = {10.1039/C7AN01371J}
}
MLA
Цитировать
Liu, Jinchao, et al. “Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution.” The Analyst, vol. 142, no. 21, Sep. 2017, pp. 4067-4074. https://doi.org/10.1039/C7AN01371J.