Open Access
Open access
volume 9 issue 24 pages 5441-5451

Large-scale comparison of machine learning methods for drug target prediction on ChEMBL

Andreas Mayr 1
Günter Klambauer 1
Thomas Unterthiner 1
Marvin Steijaert 2
Jörg Wegner 3
Hugo Ceulemans 3
Djork-Arné Clevert 4
Sepp Hochreiter 1
2
 
Open Analytics NV, Belgium
3
 
Janssen Pharmaceutica nv, Belgium
4
 
Bayer AG, Germany
Publication typeJournal Article
Publication date2018-06-06
scimago Q1
wos Q1
SJR2.138
CiteScore12.6
Impact factor7.4
ISSN20416520, 20416539
PubMed ID:  30155234
General Chemistry
Abstract

The to date largest comparative study of nine state-of-the-art drug target prediction methods finds that deep learning outperforms all other competitors. The results are based on a benchmark of 1300 assays and half a million compounds.

Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
45
50
Journal of Chemical Information and Modeling
49 publications, 11.98%
Journal of Cheminformatics
17 publications, 4.16%
Briefings in Bioinformatics
17 publications, 4.16%
Molecules
10 publications, 2.44%
Nature Communications
10 publications, 2.44%
Journal of Computer-Aided Molecular Design
8 publications, 1.96%
Bioinformatics
7 publications, 1.71%
Frontiers in Pharmacology
6 publications, 1.47%
Artificial Intelligence in the Life Sciences
6 publications, 1.47%
Chemical Science
6 publications, 1.47%
International Journal of Molecular Sciences
5 publications, 1.22%
ACS Omega
5 publications, 1.22%
Lecture Notes in Computer Science
5 publications, 1.22%
Scientific Reports
4 publications, 0.98%
Molecular Informatics
4 publications, 0.98%
Journal of Medicinal Chemistry
4 publications, 0.98%
Molecular Pharmaceutics
4 publications, 0.98%
Expert Opinion on Drug Discovery
4 publications, 0.98%
Nucleic Acids Research
3 publications, 0.73%
Pharmaceutics
3 publications, 0.73%
Patterns
3 publications, 0.73%
Drug Discovery Today: Technologies
3 publications, 0.73%
Wiley Interdisciplinary Reviews: Computational Molecular Science
3 publications, 0.73%
Digital Discovery
3 publications, 0.73%
Current Topics in Medicinal Chemistry
2 publications, 0.49%
Future Medicinal Chemistry
2 publications, 0.49%
Pharmaceuticals
2 publications, 0.49%
Frontiers in Bioengineering and Biotechnology
2 publications, 0.49%
Frontiers in Artificial Intelligence
2 publications, 0.49%
5
10
15
20
25
30
35
40
45
50

Publishers

10
20
30
40
50
60
70
80
90
Springer Nature
82 publications, 20.05%
American Chemical Society (ACS)
73 publications, 17.85%
Elsevier
54 publications, 13.2%
Oxford University Press
28 publications, 6.85%
MDPI
27 publications, 6.6%
Wiley
25 publications, 6.11%
Cold Spring Harbor Laboratory
22 publications, 5.38%
Frontiers Media S.A.
19 publications, 4.65%
Institute of Electrical and Electronics Engineers (IEEE)
15 publications, 3.67%
Royal Society of Chemistry (RSC)
12 publications, 2.93%
Bentham Science Publishers Ltd.
7 publications, 1.71%
Taylor & Francis
6 publications, 1.47%
IGI Global
4 publications, 0.98%
IOP Publishing
3 publications, 0.73%
Association for Computing Machinery (ACM)
3 publications, 0.73%
Annual Reviews
2 publications, 0.49%
Informationsmanagement in der Biotechnologie e.V. (IMBio e.V.)
2 publications, 0.49%
World Scientific
2 publications, 0.49%
American Physical Society (APS)
1 publication, 0.24%
Cambridge University Press
1 publication, 0.24%
Public Library of Science (PLoS)
1 publication, 0.24%
Social Science Electronic Publishing
1 publication, 0.24%
Walter de Gruyter
1 publication, 0.24%
Hindawi Limited
1 publication, 0.24%
eLife Sciences Publications
1 publication, 0.24%
AME Publishing Company
1 publication, 0.24%
Higher Education Press
1 publication, 0.24%
American Association for the Advancement of Science (AAAS)
1 publication, 0.24%
Canadian Science Publishing
1 publication, 0.24%
10
20
30
40
50
60
70
80
90
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
409
Share
Cite this
GOST |
Cite this
GOST Copy
Mayr A. et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL // Chemical Science. 2018. Vol. 9. No. 24. pp. 5441-5451.
GOST all authors (up to 50) Copy
Mayr A., Klambauer G., Unterthiner T., Steijaert M., Wegner J., Ceulemans H., Clevert D., Hochreiter S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL // Chemical Science. 2018. Vol. 9. No. 24. pp. 5441-5451.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1039/C8SC00148K
UR - https://doi.org/10.1039/C8SC00148K
TI - Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
T2 - Chemical Science
AU - Mayr, Andreas
AU - Klambauer, Günter
AU - Unterthiner, Thomas
AU - Steijaert, Marvin
AU - Wegner, Jörg
AU - Ceulemans, Hugo
AU - Clevert, Djork-Arné
AU - Hochreiter, Sepp
PY - 2018
DA - 2018/06/06
PB - Royal Society of Chemistry (RSC)
SP - 5441-5451
IS - 24
VL - 9
PMID - 30155234
SN - 2041-6520
SN - 2041-6539
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2018_Mayr,
author = {Andreas Mayr and Günter Klambauer and Thomas Unterthiner and Marvin Steijaert and Jörg Wegner and Hugo Ceulemans and Djork-Arné Clevert and Sepp Hochreiter},
title = {Large-scale comparison of machine learning methods for drug target prediction on ChEMBL},
journal = {Chemical Science},
year = {2018},
volume = {9},
publisher = {Royal Society of Chemistry (RSC)},
month = {jun},
url = {https://doi.org/10.1039/C8SC00148K},
number = {24},
pages = {5441--5451},
doi = {10.1039/C8SC00148K}
}
MLA
Cite this
MLA Copy
Mayr, Andreas, et al. “Large-scale comparison of machine learning methods for drug target prediction on ChEMBL.” Chemical Science, vol. 9, no. 24, Jun. 2018, pp. 5441-5451. https://doi.org/10.1039/C8SC00148K.