Chemical Communications, volume 58, issue 21, pages 3509-3512

In situ silane activation enables catalytic reduction of carboxylic acids

Publication typeJournal Article
Publication date2022-01-20
Quartile SCImago
Q1
Quartile WOS
Q2
Impact factor4.9
ISSN13597345, 1364548X
Materials Chemistry
Metals and Alloys
Surfaces, Coatings and Films
General Chemistry
Ceramics and Composites
Electronic, Optical and Magnetic Materials
Catalysis
Abstract
We describe a catalytic system for the conversion of carboxylic acids into alcohols using substoichiometric zinc acetate and N-methyl morpholine, in combination with phenylsilane as the nominal terminal reductant. Reaction monitoring by 19F NMR spectroscopy demonstrates that the reaction proceeds by mutual activation of the carboxylic acid and silane through the in situ generation of silyl ester intermediates.

Top-30

Citations by journals

1
Green Chemistry
1 publication, 11.11%
New Journal of Chemistry
1 publication, 11.11%
Organic Letters
1 publication, 11.11%
Synthesis
1 publication, 11.11%
Journal of Cleaner Production
1 publication, 11.11%
Chemistry - A European Journal
1 publication, 11.11%
Journal of the American Chemical Society
1 publication, 11.11%
Russian Chemical Reviews
1 publication, 11.11%
1

Citations by publishers

1
2
Royal Society of Chemistry (RSC)
2 publications, 22.22%
American Chemical Society (ACS)
2 publications, 22.22%
Wiley
2 publications, 22.22%
Thieme
1 publication, 11.11%
Elsevier
1 publication, 11.11%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 11.11%
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Stoll E. L. et al. In situ silane activation enables catalytic reduction of carboxylic acids // Chemical Communications. 2022. Vol. 58. No. 21. pp. 3509-3512.
GOST all authors (up to 50) Copy
Stoll E. L., Barber T., Hirst D. J., Denton R. M. In situ silane activation enables catalytic reduction of carboxylic acids // Chemical Communications. 2022. Vol. 58. No. 21. pp. 3509-3512.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1039/d1cc03396d
UR - https://doi.org/10.1039/d1cc03396d
TI - In situ silane activation enables catalytic reduction of carboxylic acids
T2 - Chemical Communications
AU - Stoll, Emma L
AU - Barber, Thomas
AU - Hirst, David J.
AU - Denton, Ross M.
PY - 2022
DA - 2022/01/20 00:00:00
PB - Royal Society of Chemistry (RSC)
SP - 3509-3512
IS - 21
VL - 58
SN - 1359-7345
SN - 1364-548X
ER -
BibTex |
Cite this
BibTex Copy
@article{2022_Stoll,
author = {Emma L Stoll and Thomas Barber and David J. Hirst and Ross M. Denton},
title = {In situ silane activation enables catalytic reduction of carboxylic acids},
journal = {Chemical Communications},
year = {2022},
volume = {58},
publisher = {Royal Society of Chemistry (RSC)},
month = {jan},
url = {https://doi.org/10.1039/d1cc03396d},
number = {21},
pages = {3509--3512},
doi = {10.1039/d1cc03396d}
}
MLA
Cite this
MLA Copy
Stoll, Emma L., et al. “In situ silane activation enables catalytic reduction of carboxylic acids.” Chemical Communications, vol. 58, no. 21, Jan. 2022, pp. 3509-3512. https://doi.org/10.1039/d1cc03396d.
Found error?