Physical Chemistry Chemical Physics, том 23, издание 31, номера страниц: 16690-16697

Optimization of the photo-orientation rate of an azobenzene-containing polymer based on a kinetic model of photoinduced ordering

Тип документаJournal Article
Дата публикации2021
ИздательThe Royal Society of Chemistry
Название журналаPhysical Chemistry Chemical Physics
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 20213.95
ISSN14639076, 14639084
Physical and Theoretical Chemistry
General Physics and Astronomy
Краткое описание
The explicit dependence of the rate of photoinduced ordering (photo-orientation) of an azobenzene-containing liquid-crystalline polymer on the photostationary concentration of cis-azobenzene has been predicted theoretically and found experimentally. The employed kinetic model based on the photoinduced rearrangement of the domain structure of a liquid-crystalline material predicts the maximum rate of photo-orientation at ca. 50% content of the cis-isomer in the photostationary state of irradiation. For experimental fine tuning of the photostationary trans-cis ratio, the simultaneous irradiation of material with two beams of light with different wavelengths was employed. The excellent agreement of theory and experiment indicates that the difference of photostationary fractions of cis-azobenzene fragments in adjacent domains of different orientations is the driving force of photoinduced ordering.
Пристатейные ссылки: 46
Цитируется в публикациях: 1
Modeling of Nonlinear Optical Phenomena in Host-Guest Systems Using Bond Fluctuation Monte Carlo Model: A Review
Mitus A.C., Saphiannikova M., Radosz W., Toshchevikov V., Pawlik G.
Q1 Materials 2021 цитирований: 7
Open Access
Open access
Photoalignment in Polysiloxane Liquid‐Crystalline Elastomers with Rearrangeable Networks
Ube T., Tsunoda H., Kawasaki K., Ikeda T.
Q1 Advanced Optical Materials 2021 цитирований: 13
Design and applications of light responsive liquid crystal polymer thin films
Mehta K., Peeketi A.R., Liu L., Broer D., Onck P., Annabattula R.K.
Q1 Applied Physics Reviews 2020 цитирований: 24
Open Access
Open access
Modeling of Stripe Patterns in Photosensitive Azopolymers
Yadav B., Domurath J., Saphiannikova M.
Q1 Polymers 2020 цитирований: 6
Open Access
Open access
Kinetics of photo-isomerization of azobenzene containing surfactants.
Arya P., Jelken J., Lomadze N., Santer S., Bekir M.
Q1 Journal of Chemical Physics 2020 цитирований: 29
Open Access
Open access
Photooptical Properties of Polymethacrylates Having Cyanoazobenzene-Containing Side Groups with Lateral Methyl Substituents and Different Spacer Length
Bobrovsky A., Shibaev V., Cigl M., Hamplová V., Novotná V.
Q1 Journal of Polymer Science, Part B: Polymer Physics 2019 цитирований: 4
Photo-orientation of nematic liquid crystal without preliminary cell surface treatment
Shvetsov S.A., Emelyanenko A.V., Bugakov M.A., Boiko N.I., Zyryanov V.Y.
Q1 Optical Materials Express 2019 цитирований: 3
Open Access
Open access
Orientation Approach to Directional Photodeformations in Glassy Side-Chain Azopolymers.
Yadav B., Domurath J., Kim K., Lee S., Saphiannikova M.
Q1 Journal of Physical Chemistry B 2019 цитирований: 26
Photoresponsive Halogen-Bonded Liquid Crystals: The Role of Aromatic Fluorine Substitution
Saccone M., Spengler M., Pfletscher M., Kuntze K., Virkki M., Wölper C., Gehrke R., Jansen G., Metrangolo P., Priimagi A., Giese M.
Q1 Chemistry of Materials 2019 цитирований: 45
Study of Formation Mechanisms of Photo-Induced Dichroism in Azo-Containing Polymer Films
Shukhina K.L., Fishman A.I., Kharintsev S.S., Skvortzov A.I.
Q3 Bulletin of the Lebedev Physics Institute 2018 цитирований: 1
Direct Microscopic Observation of Domain Rearrangement Mechanism of Photo-Orientation Process in Azobenzene-Containing Materials.
Bogdanov A.V., Vorobiev A.K.
Q1 Journal of Physical Chemistry Letters 2018 цитирований: 3
Molecular-Level Study of Photoorientation in Hydrogen-Bonded Azopolymer Complexes
Wang X., Vapaavuori J., Bazuin C.G., Pellerin C.
Q1 Macromolecules 2018 цитирований: 11
Photomechanical Effects in Liquid‐Crystalline Polymer Networks and Elastomers
White T.J.
Q1 Journal of Polymer Science, Part B: Polymer Physics 2018 цитирований: 67
Taming Macromolecules with Light: Lessons Learned from Vibrational Spectroscopy.
Vapaavuori J., Bazuin C.G., Pellerin C.
Q1 Macromolecular Rapid Communications 2017 цитирований: 6
Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model.
Liu L., Onck P.R.
Q1 Physical Review Letters 2017 цитирований: 11
Open Access
Open access
Метрики

Поделиться

Цитировать
ГОСТ |
Цитировать
1. Bogdanov A. V., Bobrovsky A. Yu., Vorobiev A. Kh. Optimization of the photo-orientation rate of an azobenzene-containing polymer based on a kinetic model of photoinduced ordering // Physical Chemistry Chemical Physics. 2021. Т. 23. № 31. С. 16690–16697.
RIS |
Цитировать

TY - JOUR

DO - 10.1039/d1cp01585k

UR - http://dx.doi.org/10.1039/d1cp01585k

TI - Optimization of the photo-orientation rate of an azobenzene-containing polymer based on a kinetic model of photoinduced ordering

T2 - Physical Chemistry Chemical Physics

AU - Bogdanov, Alexey V.

AU - Bobrovsky, Alexey Yu.

AU - Vorobiev, Andrey Kh.

PY - 2021

PB - Royal Society of Chemistry (RSC)

SP - 16690-16697

IS - 31

VL - 23

SN - 1463-9076

SN - 1463-9084

ER -

BibTex |
Цитировать

@article{Bogdanov_2021,

doi = {10.1039/d1cp01585k},

url = {https://doi.org/10.1039%2Fd1cp01585k},

year = 2021,

publisher = {Royal Society of Chemistry ({RSC})},

volume = {23},

number = {31},

pages = {16690--16697},

author = {Alexey V. Bogdanov and Alexey Yu. Bobrovsky and Andrey Kh. Vorobiev},

title = {Optimization of the photo-orientation rate of an azobenzene-containing polymer based on a kinetic model of photoinduced ordering},

journal = {Physical Chemistry Chemical Physics}

}

MLA
Цитировать
Bogdanov, Alexey V., et al. “Optimization of the Photo-Orientation Rate of an Azobenzene-Containing Polymer Based on a Kinetic Model of Photoinduced Ordering.” Physical Chemistry Chemical Physics, vol. 23, no. 31, 2021, pp. 16690–97. Crossref, https://doi.org/10.1039/d1cp01585k.