Journal of Applied Physics, volume 67, issue 6, pages 2894-2898

Explosive silicidation in nickel/amorphous‐silicon multilayer thin films

Publication typeJournal Article
Publication date1990-03-15
scimago Q2
SJR0.649
CiteScore5.4
Impact factor2.7
ISSN00218979, 10897550
General Physics and Astronomy
Abstract

Self-propagating explosive reactions can occur in multilayer thin films. Explosive silicidation in nickel/amorphous-silicon multilayer thin films has been investigated using a combination of high-speed photography, high-speed temperature measurements, plan-view transmission electron microscopy, and thin film x-ray diffraction. The multilayer films had an atomic concentration ratio of 2 Ni atoms to 1 Si atom. The silicide phase formed by explosive silicidation was Ni2 Si. This was the same phase formed by conventional thermal annealing of the multilayer thin film. The temperature of the explosive reaction front was measured to be approximately 1565 K. The reaction-front velocity was found to vary from 22 to 27 m/s and to be at most weakly dependent on the modulation period and the total film thickness. The resulting Ni2 Si grain structure formed by explosive silicidation is less defective than Ni2 Si formed by conventional thermal annealing. This was attributed to the higher reaction temperatures and the shorter reaction times of explosively formed Ni2 Si as compared to Ni2 Si formed via conventional annealing.

Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

5
10
15
20
5
10
15
20
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?